Classifiers for Behavioral Patterns Identification Induced from Huge Temporal Data
Ładowanie...
Data
2014
Tytuł czasopisma
ISSN
Tytuł tomu
Wydawnictwo
Humboldt University
Abstrakt
A new method of constructing classifiers from huge volume of temporal data is proposed in the paper. The novelty of introduced method lies in a
multi-stage approach to constructing hierarchical classifiers that combines process mining, feature extraction based on temporal patterns and constructing classifiers based on a decision tree. Such an approach seems to be practical when dealing with huge volume of temporal data. As a proof of concept a system has been
constructed for packet-based network traffic anomaly detection, where anomalies
are represented by spatio-temporal complex concepts and called by behavioral
patterns. Hierarchical classifiers constructed with the new approach turned out to
be better than ”flat” classifiers based directly on captured network traffic data.
Opis
Praca opublikowana w: Bazan, J., G., Szpyrka, M., Szczur, A., Dydo, L., Wojtowicz, H.: Classifiers for Behavioral Patterns Identification Induced from Huge Temporal Data, In Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P 2014), Chemnitz, Germany, 2014, September 29-October 1, volume 245 of Informatik-Bericht, pages 22-33, Humboldt University, 2014.