Classifiers for Behavioral Patterns Identification Induced from Huge Temporal Data

Ładowanie...
Obrazek miniatury

Data

2014

Tytuł czasopisma

ISSN

Tytuł tomu

Wydawnictwo

Humboldt University

Abstrakt

A new method of constructing classifiers from huge volume of temporal data is proposed in the paper. The novelty of introduced method lies in a multi-stage approach to constructing hierarchical classifiers that combines process mining, feature extraction based on temporal patterns and constructing classifiers based on a decision tree. Such an approach seems to be practical when dealing with huge volume of temporal data. As a proof of concept a system has been constructed for packet-based network traffic anomaly detection, where anomalies are represented by spatio-temporal complex concepts and called by behavioral patterns. Hierarchical classifiers constructed with the new approach turned out to be better than ”flat” classifiers based directly on captured network traffic data.

Opis

Praca opublikowana w: Bazan, J., G., Szpyrka, M., Szczur, A., Dydo, L., Wojtowicz, H.: Classifiers for Behavioral Patterns Identification Induced from Huge Temporal Data, In Proceedings of the Workshop on Concurrency, Specification and Programming (CS&P 2014), Chemnitz, Germany, 2014, September 29-October 1, volume 245 of Informatik-Bericht, pages 22-33, Humboldt University, 2014.

Cytowanie