Przeglądanie według Autor "Wisz, Grzegorz"
Aktualnie wyświetlane 1 - 2 z 2
- Wyniki na stronie
- Opcje sortowania
Pozycja Characteristics of TiO2, Cu2O, and TiO2/Cu2O thin films for application in PV devices(AIP Advance, 2019) Sawicka-Chudy, Paulina; Sibiński, Maciej; Pawełek, Ryszard; Wisz, Grzegorz; Cieniek, Bogumił; Potera, Piotr; Szczepan, Patryk; Adamiak, Stanisław; Cholewa, Marian; Głowa, ŁukaszSeveral Cu2O and TiO2 thin films and four additional TiO2/Cu2O structures were fabricated by direct current (DC) magnetron sputtering. The process parameters were selected on the basis of earlier studies and numerical simulations. We examined the morphology of a cross-section of the PV structures, roughness and topography, and the transmission spectra of the thin films. Additionally, the properties of the samples were determined by X-ray diffraction. Next, the morphology cross-sectional and layer compositions of the solar cells was evaluated by scanning electron microscopy. Only one of the TiO2/Cu2O structures appeared smooth and homogeneous with columnar-type growth. For the as-grown films, diffraction peaks were observed and identified as brookite, rutile, CuO, and Cu2O and the average roughness of the samples was 0.5, 1.2, 5.4, and 4.0 nm, respectively. Finally, the transmission spectra of the thin films were recorded. Transmission and reflection spectra of ultraviolet-visible spectroscopy were analyzed, and the optical band gap and absorption coefficient of the oxidized layers were calculated. In the region of 400 to 1000 nm, transmittance varied from 5% to 70% in the TiO2 samples, and from 15% to 40% in the Cu2O samples, and reflectance of the TiO2 and Cu2O samples ranged from 20% to 90%. In the region of 1.5 eV to 3.5 eV, the mean absorption coefficient varied from ∼105 1/cm to ∼3 · 105 1/cm for TiO2 thin film, and from ∼2 · 105 to ∼6 · 105 1/cm for Cu2O thin film. The optical band gap values of the samples shifted slightly toward bulk anatase-3.5 eV, bulk rutile-3.1 eV, and copper(I) oxide. Finally, silver contacts were used for the electrodes. One of the fabricated TiO2/Cu2O PV structures was found to be sensitive to electromagnetic radiance during the experiment.Pozycja Review of the development of copper oxides with titanium dioxide thin-film solar cells(2020) Sawicka-Chudy, Paulina; Sibiński, Maciej; Rybak-Wilusz, Elżbieta; Cholewa, Marian; Wisz, Grzegorz; Yavorskyi, RostyslavCopper oxide-titanium dioxide (TiO2) p–n junctions are promising materials for photovoltaic devices and may reduce production costs due to their low cost and inexpensive production methods compared with silicon solar cells. The present review compares solar cells made with copper oxides combined with TiO2–TiO2/Cu2O and TiO2/CuO heterojunctions, and “cascade heterojunction systems.” First, we describe the main properties of titanium (iv) dioxide (TiO2), cuprous oxide (Cu2O), and cupric oxide (CuO), and their potential applications. Next, we explain the concept of copper oxide and TiO2 heterojunctions. We summarize and present the photovoltaic characteristics (efficiency, fill factor, circuit current density, and open circuit voltage), thickness, preparation method, and electrode type for solar cells comprising copper oxide and TiO2. The efficiency of the solar cells ranged from 0.0005% to 1.62%. The thickness of the TiO2 and cupric oxide layers ranged from 0.06 to 16 µm, and from 0.18 to 1.5 µm, respectively, depending on the fabrication method. Additionally, we review and discuss the available combinations of copper oxide with other materials (Cu2O with ZnO, CuO with ZnO, and CuO with Si), as well as the effect of the thickness of the copper (i) oxide and copper (ii) oxide on the solar cell performance. Finally, we present aspects to improve the conversion efficiency of heterojunction solar cells with copper oxides combined with TiO2. This review will be useful for the construction and further development of thin-film solar cells.