Hierarchical Classifiers for Complex Spatio-temporal Concepts
Data
2008
Autorzy
Tytuł czasopisma
ISSN
Tytuł tomu
Wydawnictwo
Springer-Verlag
Abstrakt
The aim of the paper is to present rough set methods of constructing hierarchical classifiers for approximation of
complex concepts. Classifiers are constructed on the basis of experimental data sets and domain knowledge that are
mainly represented by concept ontology. Information systems, decision tables and decision rules are basic tools for
modeling and constructing such classifiers. The general methodology presented here is applied to approximate spatial
complex concepts and spatio-temporal complex concepts defined for (un)structured complex objects, to identify the
behavioral patterns of complex objects, and to the automated behavior planning for such objects when the states of
objects are represented by spatio-temporal concepts requiring approximation. We describe the results of computer
experiments performed on real-life data sets from a vehicular traffic simulator and on medical data concerning the
infant respiratory failure.
Opis
Jest to praca habilitacyjna dr. hab. Jana G. Bazana, prof. UR.
Publikacja opublikowana jako: Bazan, J.: Hierarchical Classifiers for Complex Spatio-temporal Concepts, In Transactions on Rough Sets IX, Lecture Notes in Computer Science 5390, 474-750, Berlin, Heidelberg: Springer-Verlag (2008).
The original publication is available at www.sprigerlink.com (Oryginalna publikacja jest dostępna na stronie www.sprigerlink.com).
Cytowanie
BazanHab2008