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Abstract. The aim of the paper is to present rough set methods of
constructing hierarchical classifiers for approximation of complex con-
cepts. Classifiers are constructed on the basis of experimental data sets
and domain knowledge that are mainly represented by concept ontology.
Information systems, decision tables and decision rules are basic tools
for modeling and constructing such classifiers. The general methodol-
ogy presented here is applied to approximate spatial complex concepts
and spatio-temporal complex concepts defined for (un)structured com-
plex objects, to identify the behavioral patterns of complex objects, and
to the automated behavior planning for such objects when the states of
objects are represented by spatio-temporal concepts requiring approxi-
mation. We describe the results of computer experiments performed on
real-life data sets from a vehicular traffic simulator and on medical data
concerning the infant respiratory failure.

Keywords: rough set, concept approximation, complex dynamical sys-
tem, ontology of concepts, behavioral pattern identification, automated
planning.

1 Introduction

Reasoning based on concepts constitutes one of the main elements of a thinking
process because it is closely related to the skill of categorization and classification
of objects. The term concept means mental picture of a group of objects (see
[183]). While the term conceptualize is commonly understood to mean form a
concept or idea about something (see [183]). In the context of this work, there is
interest in classifying conceptualized sets of objects. Concepts themselves provide
a means of describing (forming a mental picture of) sets of objects (for a similar
understanding the term concept, see, e.g., [71, 133, 194]).

Definability of concepts is a term well-known in classical logic (see, e.g.,
[171]). Yet in numerous applications, the concepts of interest may only be de-
fined approximately on the basis of available, incomplete information about them
(represented, e.g., by positive and negative examples) and selected primary con-
cepts and methods for creating new concepts out of them. It brings about the
necessity to work out approximate reasoning methods based on inductive rea-
soning (see, e.g., [93, 94, 129, 142, 172, 175, 179, 247]).



In machine learning, this issue is known under the term learning concepts by
examples (see, e.g., [172]). The main problem of learning concepts by examples
is that the description of a concept under examination needs to be created on
the basis of known examples of that concept. By creating a concept description
we understand detection of such properties of exemplary objects belonging to
this concept that enable further examination of examples in terms of their mem-
bership in the concept under examination. A natural way to solve the problem
of learning concepts by examples is inductive reasoning which means that while
obtaining further examples of objects belonging to the concept (the so-called
positive examples) and examples of objects not belonging to the concept (the
so-called negative examples), an attempt is made to find such a description that
correctly matches all or almost all examples of the concept under examination.
Moreover, instead of speaking of learning concepts by examples, one may con-
sider a more general learning of the so-called classifications which are partitions
of all examples into a family of concepts (called decision classes) creating a
partition of the object universe. A description of such a classification makes it
possible to recognize the decision that should be made about examples unknown
so far; that is, it gives us the answer as to what decision should be made that
also includes examples not occurring in the process of classification learning.

Classifiers also known in literature as decision algorithms, classifying algo-
rithms or learning algorithms may be treated as constructive, approximate de-
scriptions of concepts (decision classes). These algorithms constitute the kernel
of decision systems that are widely applied in solving many problems occurring
in such domains as pattern recognition, machine learning, expert systems, data
mining and knowledge discovery (see, e.g., [93, 129, 142, 172, 175, 179, 247]).

In literature there can be found descriptions of numerous approaches to con-
structing classifiers, which are based on such paradigms of machine learning
theory as classical and modern statistical methods (see, e.g., [175, 247]), neural
networks (see, e.g., [175, 247]), decision trees (see, e.g., [175]), decision rules (see,
e.g., [172, 175]), and inductive logic programming (see, e.g., [175]). Many of the
approaches mentioned above resulted in decision systems intended for computer
support of decision making (see, e.g., [175]). An example of such a system is
RSES (Rough Set Exploration System [39, 253]) which has been developed for
over ten years and utilizes rough set theory, originated by Professor ZdzisÃlaw
Pawlak (see [217, 221, 230]), in combination with Boolean reasoning (see [58,
219, 267]).

With the development of modern civilization, not only the scale of the data
gathered but also the complexity of concepts and phenomena which they con-
cern are increasing rapidly. This crucial data change has brought new challenges
to work out new data mining methods. Particularly, data more and more often
concerns complex processes which do not give in to classical modeling methods.
Of such a form may be medical and financial data, data coming from vehicles
monitoring, or data about the users gathered on the Internet. Exploration meth-
ods of such data are in the center of attention in many powerful research centers
in the world, and at the same time detection of models of complex processes
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and their properties (patterns) from data is becoming more and more attrac-
tive for applications (see, e.g., [54, 57, 148–152, 210–214, 273, 280, 296–299, 316]).
Making a progress in this field is extremely crucial, among other things, for the
development of intelligent systems which support decision making on the basis
of results of analysis of the available data sets. Therefore, working out methods
of detection of process models and their properties from data and proving their
effectiveness in different applications are of particular importance for the further
development of decision supporting systems in many domains such as medicine,
finance, industry, transport, telecommunication, and others.

However, in the last few years essential limitations have been discovered
concerning the existing data mining methods for very large data sets regarding
complex concepts, phenomena, or processes (see, e.g., [56, 231, 321, 352–354]). A
crucial limitation of the existing methods is, among other things, the fact that
they do not support an effective approximation of complex concepts, that is,
concepts whose approximation requires discovery of extremely complex patterns.
Intuitively, such concepts are too far in the semantical sense from the available
concepts, e.g., sensory ones. As a consequence, the size of spaces which should be
searched in order to find patterns crucial for approximation are so large that an
effective search of these spaces very often becomes unfeasible using the existing
methods and technology. Thus, as it turned out, the ambition to approximate
complex concepts with high quality from available concepts (most often defined
by sensor data) in a fully automatic way, realized by the existing systems and
by most systems under construction, is a serious obstacle since the classifiers
obtained are often of unsatisfactory quality.

Recently, it has been noticed in the literature (see, e.g., [4, 77, 92, 145, 146,
231, 290]) that one of the challenges for data mining is discovery of methods
linking detection of patterns and concepts with domain knowledge. The latter
term denotes knowledge about concepts occurring in a given domain and various
relations among them. This knowledge greatly exceeds the knowledge gathered
in data sets; it is often represented in a natural language and usually acquired
during a dialogue with an expert in a given domain. One of the ways to rep-
resent domain knowledge is to record it in the form of the so-called concept
ontology where ontology is usually understood as a finite hierarchy of concepts
and relations among them, linking concepts from different levels (see, e.g., [116,
130]).

In the paper, we discuss methods for approximation of complex concepts
in real-life projects. The reported research is closely related to such areas as
machine learning and data mining (feature selection and extraction [119, 160,
161], classifier construction [142, 172, 175, 179], analytical learning and expla-
nation based learning [67, 84, 179, 181, 182]), temporal and spatio-temporal rea-
soning [223, 248, 249], hierarchical learning and modeling [128, 167, 208, 231, 290,
355], adaptive control [208, 209], automated planning (hierarchical planning, re-
construction of plans, adaptive learning plans) [100, 121, 127, 153, 254, 328, 337],
rough sets and fuzzy sets (approximation of complex vague concepts) [31, 33,
168, 189, 191, 205, 265, 270, 276, 277, 351], granular computing (searching for com-
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pound patterns) [15, 74, 186, 264], complex adaptive systems [8, 69, 97, 165, 294,
317], autonomous multiagent systems [123, 162–164]), swarm systems [52, 78,
226], ontologies development [113, 116, 130, 279, 330].

It is also worthwhile mentioning that the reported research is also closely
related to the domain of clinical decision-support for medical diagnosis and
therapy (see, e.g., [55, 75, 76, 103, 177, 178, 193, 202, 222, 255, 258, 281, 282, 325]).
Many reported results in this domain can be characterized as methods for solving
specific problems such as temporal abstraction problem [255, 282, 325] or medical
planning problem [55, 103, 177, 281]). Many methods and algorithms proposed in
this paper can be also used for solving such problems.

The main aim of the paper is to present the developed methods for approxi-
mation of complex vague concepts involved in specification of real-life problems
and approximate reasoning used in solving these problems. However, methods
presented in the paper are assuming that additional domain knowledge in the
form of the concept ontology is given. Concepts from ontology are often vague
and expressed in natural language. Approximation of ontology is used to cre-
ate hints in searching for approximation of complex concepts from sensory (low
level) data.

The need of use of a domain knowledge expressed in the form of a concept on-
tology can be noticed in intensively developing domains connected with analysis
and data processing as in the case of reinforcement learning (see, e.g., [179, 300,
227, 228]). In the latter field, methods of learning new strategies with reinforce-
ment take into account concept ontologies obtained from an expert, with the help
of which it is possible to construct an approximation of a function estimating
the quality of actions performed. Similarly, in a Service Oriented Architecture
(SOA) [4, 92], the distribution of varied Web Services can be performed with the
use of a domain knowledge, expressed using a concept ontology.

There also appeared propositions (see, e.g., [146, 231, 290]) that use domain
knowledge to search for the approximation of complex concepts in a hierarchical
way which would lead to hierarchical classifiers able to approximate complex
concepts with the high quality, e.g., by analogy to biological systems [231]. This
idea can be also related to learning of complex (e.g., nonlinear) functions for
fusion of information from different sources [141]. Therefore, currently, the prob-
lem of construction of such hierarchical classifiers is fundamental for complex
concepts approximation and its solution will be crucial for construction of many
methods of intelligent data analysis. These are, for example,

– methods of classification of objects into complex spatial concepts which are
semantically distant from sensor data, e.g., these are concepts as safe vehicle
driving on a highway, hazardous arrangement of two cooperating robots which
puts them both at risk of being damaged,

– methods of classification of object to complex spatio-temporal concepts se-
mantically distant from sensor data which require observation of single ob-
jects or many objects over a certain period of time (e.g., acceleration of a
vehicle on the road, gradual decrease of a patient’s body temperature, robot’s
backward movement while turning right),
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– methods of behavioral pattern or high risk pattern identification where these
types of patterns may be treated as complex concepts representing dynamic
properties of objects; such concepts are expressed in a natural language on a
high level of abstraction and describing specific behaviors of a single object
(or many complex objects) over a certain period of time (e.g., overtaking one
vehicle by another, a traffic jam, chasing one vehicle after another, behavior
of a patient under a high life threat, ineffective cooperation of a robot team)

– methods of automatic learning of plans of complex object behavior, where
a plan may be treated as a complex value of the decision which needs to be
made for complex objects such as vehicles, robots, groups of vehicles, teams
of robots, or patients undergoing treatment.

In the paper, we propose to link automatic methods of complex concept
learning, and models of detection of processes and their properties with domain
knowledge obtained in a dialogue with an expert. Interaction with a domain
expert facilitates guiding the process of discovery of patterns and models of
processes and makes the process computationally feasible. Thus presentation of
new approximation methods of complex concepts based on experimental data
and domain knowledge, represented using ontology concepts, is the main aim of
this paper. In our opinion, the presented methods are useful for solving typical
problems appearing when modeling complex dynamical systems.

1.1 Complex Dynamical Systems

When modeling complex real-world phenomena and processes mentioned above
and solving problems under conditions that require an access to various dis-
tributed data and knowledge sources, the so-called complex dynamical systems
(CDS) are often applied (see, e.g., [8, 69, 97, 165, 294, 317]), or putting it in other
way autonomous multiagent systems (see, e.g., [123, 162–164]) or swarm systems
(see, e.g., [226]). These are collections of complex interacting objects character-
ized by constant change of parameters of their components over time, numerous
relationships between the objects, the possibility of cooperation/competition
among the objects and the ability of objects to perform more or less compound
actions. Examples of such systems are traffic, a patient observed during treat-
ment, a team of robots during performing some task, etc.

It is also worthwhile mentioning that the description of a CDS dynamics is
often not possible with purely analytical methods as it includes many complex
vague concepts (see, e.g., [138, 139, 245]). Such concepts concern properties of
chosen fragments of the CDS and may be treated as more or less complex objects
occurring in the CDS. Hence, are needed appropriate methods of extracting such
fragments that are sufficient to conclude about the global state of the CDS in
the context of the analyzed types of changes and behaviors. In this approach,
the CDS state is described by providing information about the membership of
the complex objects isolated from the CDS in the complex concepts already
established, describing properties of complex objects and relations among these
objects. Apart from that, the description of the CDS dynamics requires following
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changes of the CDS state in time which leads to the so-called trajectory (history),
that is, sequences of the CDS states observed over a certain period of time.
Therefore, there are also needed methods for following changes of the selected
fragments of the CDS and changes of relations between the extracted fragments.
In this paper, we use complex spatio-temporal concepts concerning properties,
describing the dynamics of complex objects occurring in CDSs, to represent
and monitor such changes. They are expressed in natural language on a much
higher level of abstraction than so-called sensor data, so far mostly applied to the
approximation of concepts. Examples of such concepts are safe car driving, safe
overtaking, patient’s behavior when faced with a life threat, ineffective behavior
of robot team.

However, the identification of complex spatio-temporal concepts and using
them to monitor a CDS requires approximation of these concepts. In this paper,
we propose to approximate complex spatio-temporal concepts by hierarchical
classifiers mentioned above and based on data sets and domain knowledge.

1.2 Problems in Modeling Complex Dynamical Systems

In modeling complex dynamical systems there appear many problems related
to approximation of complex concepts used to describe the dynamics of the
systems. One of these problems is obviously the problem of the gap between
complex concepts and sensor data mentioned above. Apart from that, a series of
other problems may be formulated whose solution is very important for complex
concepts approximation and for complex dynamical systems monitoring. Below,
we present a list of such problems including particularly those whose solution is
the aim of this paper.

1. Problem of the gap between complex concepts and sensor data preventing
an effective direct usage of sensor data to induce approximation of complex
concepts by fully automatic methods.

2. Problem of complex concept stratification in classifier construction.
3. Problem of identification of behavioral patterns of complex objects in com-

plex dynamical systems monitoring.
4. Problem of context of complex object parts while complex dynamical systems

monitoring.
5. Problem of time speed-up in identification of behavioral patterns.
6. Problem of automated planning of complex object behavior when the object

states are represented by complex concepts requiring approximation.
7. Problem of solving conflicts between actions in automated planning of com-

plex object behavior.
8. Problem of synchronization of plans constructed for parts of a structured

complex object.
9. Problem of plan adaptation.

10. Problem of similarity relation approximation between complex objects, com-
plex object states, and complex object behavioral plans using data sets and
domain knowledge.
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In further subsections, a brief overview of the problems mentioned above is
presented.

Problem of the Gap Between Complex Concepts and Sensor Data. As
we mentioned before, in spatio-temporal complex concepts approximation using
sensor data, there occur major difficulties resulting from the fact that between
spatio-temporal complex concepts and sensor data, there exists a gap which pre-
vents an effective direct usage of sensor data for approximation of complex con-
cepts. Therefore, in the paper we propose to fill the gap using domain knowledge
represented mainly by a concept ontology and data sets chosen appropriately for
this ontology (see Section 1.3).

Problem of Complex Concept Stratification. When we create classifiers
for concepts on the basis of uncertain and imprecise data and knowledge se-
mantically distant from the concepts under approximation, it is frequently not
possible to construct a classifier which decisively classifies objects, unknown dur-
ing classifier learning, to the concept or its complement. There appears a need to
construct such classifiers that, instead of stating clearly about the object under
testing whether it belongs to the concept or not, allow us to obtain only a certain
type of membership degree of the object under testing to the concept. In other
words, we would like to determine, with regards to the object under testing,
how certain the fact that this object belongs to the concept is. Let us notice
that this type of mechanism stratifies concepts under approximation, that is,
divides objects under testing into layers labeled with individual values of mem-
bership degree to the concept. Such a mechanism can be obtained using different
kinds of probability distributions (see [93, 321]). However, in this paper, instead
of learning of a probability distribution we learn layers of concepts relevant for
construction of classifiers. We call such classifiers as stratifying classifiers and we
present two methods of a stratifying classifier construction (see Section 1.3). Our
approach is inspired by papers about linguistic variables written by Professor
Lotfi Zadeh (see [348–350]).

Problem of Identifying Behavioral Patterns. The study of collective be-
havior in complex dynamical systems is now one of the more challenging research
problems (see, e.g., [52, 69, 80, 162, 163, 225, 226, 229]), especially if one considers
the introduction of some form of learning by cooperating agents (see, e.g., [78,
228, 227, 45, 300, 293, 292]). For example, an efficient complex dynamical systems
monitoring very often requires the identification of the so-called behavioral pat-
terns or a specific type of such patterns called high-risk patterns or emergent
patterns (see, e.g., [1, 69, 80, 124, 154, 155, 162, 163, 166, 257, 261]). They are com-
plex concepts concerning dynamic properties of complex objects expressed in a
natural language on a high level of abstraction and describing specific behaviors
of these objects. Examples of behavioral patterns may be: overtaking one vehi-
cle by another vehicle, driving a group of vehicles in a traffic jam, behavior of a
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patient under a high life threat, etc. These types of concepts are difficult to iden-
tify automatically because they require watching complex object behavior over
longer period of time and this watching usually is based on the identification
of a sequence of less complex spatio-temporal concepts. Moreover, a crucial role
for identification of a given behavioral pattern is played by the sequence of less
complex concepts which identify it. For example, in order to identify the behav-
ioral pattern of overtaking one vehicle by another, it should first be determined
whether the overtaking vehicle approaches the overtaken vehicle; next, whether
the overtaking vehicle changes lanes appropriately and overtakes the vehicle;
and finally, to determine that the overtaking vehicle returns to the previous lane
driving in front of the overtaken vehicle. The methodology of a dynamical system
modeling proposed in the paper enables approximation of behavioral patterns on
the basis of data sets and domain knowledge expressed using a concept ontology
(see Section 1.3).

Problem of Context for Complex Object Parts. In this paper, any com-
plex dynamical system (CDS) is represented using descriptions of its global states
or trajectories (histories), that is, sequences of CDS states observed over a certain
period of time (see, e.g., [91, 107, 118, 156, 157, 192, 215, 346] and Section 1.1).
Properties of such states or trajectories are often dependent on specific parts of
these states or trajectories. This requires to consider the relevant structure of
states or trajectories making it possible to extract parts and the relevant con-
text of parts. Moreover, each structured object occurring in a complex dynamical
system is understood as a set of parts extracted from states or trajectories of
a given complex dynamical system. Such parts are often related by relations
representing links or interactions between parts. That is why both learning of
the behavioral patterns concerning structured objects and the identification of
such patterns, in relation to specific structured objects, requires the isolation
of structured objects as sets of potential parts of such objects, that is, object
sets of lesser complexity. The elementary approach to isolate structured objects
consisting in examination of all possible subsets (of an established size) of the set
of potential parts of structured objects cannot be applied because of potentially
high number of such subsets. For example, during an observation of a highway
from a helicopter (see, e.g., [74, 339]), in order to identify a group of vehicles
which are involved in the maneuver of dangerous overtaking, it would be neces-
sary to follow (in the real time) the behavior of all possible groups of vehicles of
an established size (e.g., six vehicles, see Appendix A) that may be involved in
this maneuver, which already with a relatively small number of visible vehicles
becomes computationally too difficult.

Another possibility is the application of methods which use the context in
which the objects being parts of structured objects occur. This type of methods
isolate structured objects not by a direct indication of the set of parts of the
searched structured object but by establishing one part of the searched struc-
tured object and attaching to it other parts, being in the same context as the
established part. Unfortunately, also here, the elementary approach to deter-

8



mination of the context of the part of the structured object, consisting in ex-
amination of all possible subsets (of an established size) of the set of potential
structured objects to which the established part of the structured object belongs,
cannot be applied because of a large number of such subsets. For example, in
order to identify a group of vehicles which are involved in a dangerous maneuver
and to which the vehicle under observation belongs, it would be necessary to
follow (in the real time) the behavior of the possible groups of vehicles of an
established size (e.g., six vehicles, see Appendix A) to which the vehicle consid-
ered belongs, which is, with a relatively small number of visible vehicles, still
computationally too difficult. Therefore, there are needed special methods of de-
termining the context of the established part of the structured object based on
a domain knowledge which enable to limit the number of analyzed sets of parts
of structured objects. In the paper, we propose the so-called sweeping method
which enables fast determination of the context of the established object treated
as one of the parts of the structured object (see Section 1.3).

Problem of Time Speed-up in Identification of Behavioral Patterns.
Identification of a behavioral pattern in relation to a specific complex object may
be performed by observing the behavior of these objects over a certain period
of time. Attempts to shorten this time are usually inadvisable, because they
may cause false identification of behavioral pattern in relation to some complex
objects. However, in many applications there exists a need for a fast decision
making (often in the real time) about whether or not a given object matches the
established behavioral pattern. It is extremely crucial in terms of computational
complexity because it enables a rapid elimination of these complex objects which
certainly do not match the pattern. Therefore, in the paper, there is presented
a method of elimination of complex objects in identification of a behavioral pat-
tern, which is based on the rules of fast elimination of behavioral patterns which
are determined on the basis of data sets and domain knowledge (see Section 1.3).

Problem of Automated Planning. In monitoring the behavior of complex
dynamical systems (e.g., by means of behavioral patterns identification) there
may appear a need to apply methods of automated planning of complex object
behavior. For example, if during observation of a complex dynamical system,
a behavioral pattern describing inconvenient or unsafe behavior of a complex
object (i.e., a part of system state or trajectory) is identified, then the system
control module may try, using appropriate actions, to change the behavior of
this object in such a way as to lead the object out of the inconvenient or unsafe
situation. However, this type of short-term interventions may not be sufficient
to lead the object out of the undesired situation permanently. Therefore, a pos-
sibility of automated planning is often considered which means construction of
sequences of actions alternately with states (of plans) to be performed by the
complex object or on the complex object in order to bring it to a specific state. In
literature, there may be found descriptions of many automated planning meth-
ods (see, e.g., [100, 121, 127, 153, 254, 328, 337]). However, applying the latter ap-
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proaches, it has to be assumed that the current complex object state is known
which results from a simple analysis of current values of available parameters of
this object. Meanwhile, in complex dynamical systems, a complex object state
is often described in a natural language using vague spatio-temporal conditions
whose satisfiability cannot be tested on the basis of a simple analysis of avail-
able information about the object. For example, when planning the treatment
of an infant suffering from the respiratory failure, the infant’s condition may be
described by the following condition:

– Patient with RDS type IV, persistent PDA and sepsis with mild internal
organs involvement (see Appendix B for mor medical details).

Stating the fact that a given patient is in the above condition requires an anal-
ysis of examination results of this patient registered over a certain period of time
with a large support of a domain knowledge provided by experts (medical doc-
tors). This type of conditions may be represented using complex spatio-temporal
concepts. Identification of these conditions requires, however, an approximation
of the concepts representing them with the help of classifiers. Therefore, in the
paper, we describe automated planning methods of behavior of complex objects
whose states are described using complex concepts requiring approximation (see
Section 1.3).

Problem of Solving Conflicts Between Actions. In automated planning
methods, during a plan construction there usually appears a problem of non-
deterministic choice of one action possible to apply in a given state. Therefore,
usually there may be many solutions to a given planning problem consisting in
bringing a complex object from the initial state to the final one using different
plans. Meanwhile, in practical applications there often appears a situation that
the automatically generated plan must be compatible with the plan proposed by
the expert (e.g., the treatment plan should be compatible with the plan proposed
by human experts from a medical clinic). Hence, we inevitably need tools which
may be used during a plan generation to solve the conflicts appearing between
actions which may be performed at a given planning state. It also concerns
making the decision about what state results from the action performed. That
is why, in the paper, we propose a method which indicates the action to be
performed in a given state or shows the state which is the result of the indicated
action. This method uses a special classifier constructed on the basis of data sets
and domain knowledge (see Section 1.3).

Problem of Synchronizing Plans. In planning the behavior of structurally
complex objects consisting of parts being objects of lesser complexity, it is of-
ten not possible to plan effectively the behavior of a whole such object. That is
why, in such cases the behavior of all parts is usually planned separately. How-
ever, such an approach to behavior planning for a complex object requires plan
synchronization constructed for individual parts in such a way as not to make
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these plans contradicting one to another but be complement in order to plan the
best behavior for the whole complex object. For example, treatment of a certain
illness A, which is the result of illnesses B and C requires such a treatment plan-
ning of illnesses B and C so as not to make their treatments contradictory, but
to make them to support and to complement one another during treatment of
illness A. In the paper, a planning synchronization method for parts of a complex
object is presented. It uses two classifiers constructed on the basis of data sets
and domain knowledge (see Section 1.3). If we treat plans constructed for parts
of a structured object as processes of some kind, then the method of synchroniz-
ing those plans is a method of synchronization of processes corresponding to the
parts of a structured object. It should be emphasized, however, that the signif-
icant novelty of the method of synchronization of processes presented herein in
relation to the ones known from literature (see, e.g., [122, 131, 250, 295, 312, 338])
is the fact that the synchronization is carried out by using classifiers determined
on the basis of data sets and domain knowledge.

Plan Adaptation Problem. After constructing a plan for a complex object,
the execution of this plan may take place. However, the execution of the whole
plan is not always possible in practice. It may happen that, during the plan
execution such a state of complex object occurred that is not compatible with
the state predicted by the plan. Then, the question arises whether the plan
should still be executed or whether it should be reconstructed (updated).

If the current complex object state differs slightly from the state expected
by the plan, then the execution of the current plan may perhaps be continued.
If, however, the current state differs significantly from the state from the plan,
then the current plan has to be reconstructed. It would seem that the easiest
way to reconstruct the plan is construction of a new plan which commences at
the current state of the complex object and ends at the final state of the old plan
(a total reconstruction of the plan). However, in practical applications, a total
reconstruction can be too costly in terms of computation or resources. Therefore,
we need other methods which can effectively reconstruct the original plan in such
a way as to realize it at least partially. Hence, in the paper, we propose a method
of plan reconstruction called a partial reconstruction. It consists of constructing
a short so-called repair plan which quickly brings the complex object to the
so-called return state from the current plan. Next, on the basis of the repair
plan, a reconstruction of the current plan is performed by replacing its fragment
beginning with the current state and ending with the return state of the repair
plan (see Section 1.3).

It is worth noticing that this issue is related to the domain of artificial intel-
ligence called the reasoning about changes (see, e.g., [134, 329]). Research works
in this domain very often concern construction of a method of concluding about
changes in satisfiability of concepts on a higher level of a certain concept hier-
archy as a basis for discovery of plans aimed at restoration of the satisfiability
of the desired concepts on a lower level of this hierarchy.
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Problem of Similarity Relation Approximation. In building classifiers
approximating complex spatio-temporal concepts, there may appear a need to
estimate the similarity or the difference of two elements of a similar type such as
complex objects, complex object states or plans generated for complex objects.
This is an example of a classical case of the problem of defining similarity relation
(or perhaps defining dissimilarity relation complementary to it) which is still one
of the greatest challenges of data mining and knowledge discovery. The existing
methods of defining similarity relations are based on building similarity func-
tions on the basis of simple strategies of fusion of local similarities of compared
elements. Optimization of the similarity formula established is performed by tun-
ing both parameters of local similarities and their linking parameters (see, e.g.,
[7, 82, 96, 187, 259, 334, 336, 340, 342, 343]). Frequently, however, experts from a
given domain are not able to provide such a formula that would not raise their
doubts and they limit themselves to the presentation of a set of examples of
similarity function values, that is, a set of pairs of the compared elements la-
beled with degrees representing similarity function value. In this case, defining
the similarity function requires its approximation with the help of a classifier,
and at the same time such properties of compared elements should be defined
that enable to approximate the similarity function. The main difficulty of the
similarity function approximation is an appropriate choice of these properties.
Meanwhile, according to the domain knowledge there are usually many various
aspects of similarity between compared elements. For example, when compar-
ing medical plans constructed for treatment of infants with a respiratory failure
(see Appendix B), similarity of antibiotic therapies, similarity of applied me-
chanical ventilation methods, similarity of PDA closing and others should be
taken into account. Each of these aspects should be considered in a specific way
and presentation of formulas describing them can be extremely difficult for an
expert. Frequently, an expert may only give examples of pairs of comparable ele-
ments together with their similarity in each of these aspects. Moreover, a fusion
of different similarity aspects into a global similarity should also be performed
in a way resulting from the domain knowledge. This way may be expressed,
for example, using a concept ontology. In the paper, we propose a method of
similarity relation approximation based on the usage of data sets and domain
knowledge expressed, among other things, on the basis of a concept ontology
(see Section 1.3).

1.3 Overview of the Results Achieved

As we mentioned before, the aim of this paper is to present a set of approximation
methods of complex spatio-temporal concepts and approximate reasoning con-
cerning these concepts, assuming that the information about concepts is given
mainly in the form of a concept ontology.

The results described in the paper may be divided into the following groups:

1. methods for construction of classifiers stratifying a given concept,
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2. general methodology of concept approximation with the usage of data sets
and domain knowledge represented mainly in the form of a concept ontology,

3. methods for approximation of spatial concepts from an ontology,
4. methods for approximation of spatio-temporal concepts from an ontology

defined for unstructured objects,
5. methods for approximation spatio-temporal concepts from an ontology de-

fined for structured objects,
6. methods for behavioral pattern identification of complex objects in states of

complex dynamical systems,
7. methods for automated planning of behavior of complex objects when the

object states are represented by vague complex concepts requiring approxi-
mation,

8. implementation of all more crucial methods described in the paper as the
RSES system extension.

In further subsections we briefly characterize the above groups of results.
At this point we present the publications on which the main results of our

research have been partially based. The initial version of method for approx-
imation of spatial concepts from an ontology was described in [28]. Methods
for approximation of spatio-temporal concepts and methods for behavioral pat-
tern identification were presented in [14, 15, 18, 19, 27, 29, 30]. Papers [14, 27, 29,
30] concern behaviors related to recognition of vehicle behavioral patterns or a
group of vehicles on the road. The traffic simulator used to generate data for the
needs of computer experiments was described in [188]. The paper [18] concerns
medical applications related to recognition of high death risk pattern of infants
suffering from respiratory failure, whereas papers [15, 19] concern both applica-
tions which were mentioned above. Finally, methods for automated planning of
behavior of complex objects were described in [15–17].

Methods for Construction of Classifiers Stratifying Concepts. In prac-
tice, construction of classifiers often takes place on the basis of data sets con-
taining uncertain and imprecise information (knowledge). That is why it is not
often possible to construct a classifier which decisively classifies objects to the
concept or its complement. This phenomenon occurs particularly when there is
a need to classify objects not occurring in a learning set of objects, that is, those
which are not used to construct the classifier.

One possible approach is to search for classifiers approximating probability
distribution (see, e.g., [93, 321]). However, in application, one may often require
a less exact method based on classifying objects to different linguistic layers of
the concept. This idea is inspired by papers of Professor Lotfi Zadeh (see, e.g.,
[348–350]). In our approach, the discovered concept layers are used as patterns
in searching for approximation of a more compound concept. In the paper, we
present methods for construction of classifiers which, instead of stating clearly
whether a tested object belongs to the concept or not, enable to obtain some
membership degree of the tested object to the concept. In the paper, we define
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the concept of a stratifying classifier as a classifying algorithm stratifying con-
cepts, that is, classifying objects to different concept layers (see Section 3). We
propose two approaches to construction of these classifiers. One of them is the
expert approach which is based on the defining, by an expert, an additional at-
tribute in data which describes membership of the object to individual concept
layers. Next, a classifier differentiating layers as decision classes is constructed.
The second approach called the automated approach is based on the designing
algorithms being the classifier extensions which enable to classify objects to con-
cept layers on the basis of certain premises and experimental observations. In
the paper, a new method of this type is proposed which is based on shortening
of decision rules relatively to various coefficients of consistency.

General Methodology of Concept Approximation from Ontology. One
of the main results presented in this paper is a methodology of approximating
concepts from ontology. Generally, in order to approximate concepts a classical
in machine learning [172] method of concept approximation is applied on the
basis of positive and negative examples. It is based on the construction of a
data table for each concept, known in rough set theory as a decision table (a
special information system with a distinguished attribute called decision [217])
with rows (called objects) corresponding to positive and negative examples of the
concept approximated and columns describing properties (features, attributes)
of examples expressed by formulas in a considered language. The last column,
called the decision column, is treated as a description of membership of individual
examples to the concept approximated. For a table constructed in such a way,
classifiers approximating a concept are built.

In such an approach, the main problem is the choice of examples of a given
concept and properties of these examples.

The specificity of methodology of concept approximation proposed here in
comparison with other methods (see, e.g., [175, 289, 290]) is the usage of a domain
knowledge expressed in the form of a concept ontology together with the rough
set methods.

For concepts from the lowest level of an ontology hierarchy (the sensor level),
not depending on the remaining concepts, we assume that so-called sensor at-
tributes are also available which on the basis of given positive and negative
examples, enable approximating these concepts by using classical methods of
classifier construction.

However, the concept approximation methods, applied on a higher level of
ontology consist in approximation of concepts using concepts from the lower
ontology level. In this way, there are created hierarchical classifiers which use
domain knowledge recorded in the form of ontology levels. In other words, pat-
terns discovered for approximation of concepts on a given hierarchy level are
used in construction of more compound patterns relevant for approximation of
concepts on the next hierarchy level.

To approximate concepts from the higher ontology level, sensor attributes
cannot be applied directly because the “semantical distance” of the higher level
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concepts from sensor attributes is too long and they are defined on different
abstraction levels, i.e., searching for relevant features to approximate such con-
cepts directly from sensory features becomes unfeasible (see the first problem
from Section 1.2). For example, it is hardly believable that given only sensor at-
tributes describing simple parameters of driving a vehicle (e.g., location, speed,
acceleration), one can approximate such a complex concept as safe driving a
vehicle. Therefore, we propose a method, by means of which concepts from the
higher ontology level exclusively be approximated by concepts from one level be-
low. The proposed approach to concept approximation of a higher level is based
on the assumption that the concept from the higher ontology level is semanti-
cally not too far from concepts lying on the lower level in the ontology. “Not too
far” means that it may be expected that it is possible to approximate a concept
from the higher ontology level with the help of lower ontology level concepts and
patterns used for or derived from their construction, for which classifiers have
already been built.

If we assume that approximation of concepts on the higher ontology level
takes place using lower level concepts, then according to an established con-
cept approximation methodology, positive and negative examples of the concept
approximated are needed as well as their properties which serve the purpose of
approximation. However, because of the semantical differences between concepts
on different ontology levels, mentioned above, examples of lower ontology level
concepts cannot be directly used to approximate a higher ontology level concept.
For example, if the concept of a higher level concerns a group of vehicles (e.g.,
driving in a traffic jam, chase of one vehicle after another, overtaking), whereas
the lower level concepts concern single vehicles (e.g., accelerating, decelerating,
changing lanes), then the properties of a single vehicle (defined in order to ap-
proximate lower ontology level concepts) are usually insufficient to describe the
properties of the whole group of vehicles. Difficulties with concept approxima-
tion on the higher ontology level using examples of the lower ontology level also
appear when on the higher ontology level there are concepts concerning a time
period different than that one related to the concepts on the lower ontology
level. For example, a higher level concept may concern a time window, that is,
a certain period of time (e.g., vehicle acceleration, vehicle deceleration), whereas
the lower level concepts may concern a certain instant, that is, a time point (e.g.,
a small vehicle speed, location of vehicle in the right lane).

Hence, we present a method for construction of positive and negative ex-
amples of a concept of a higher ontology level consisting, in a general case,
in arrangement (putting together) sets of examples of concepts of the lower
ontology level. At the same time we define and represent such sets using pat-
terns expressed in languages describing properties of examples of concepts of
lower level in the ontology. These sets (represented by patterns) are arranged
according to the so-called constraints resulting from the domain knowledge and
determining which sets (patterns) may be arranged and which cannot be ar-
ranged for the construction of examples of higher level concepts. Thus, object
structures on higher hierarchical levels come into being through linking (with

15



the consideration of certain constraints) of objects from lower levels (and more
precisely sets of these objects described by patterns). Such an approach enables
a gradual modeling properties of more and more complex objects. Starting with
elementary objects, objects being their sets or sequences of such objects, sets of
sequences, etc. are gradually modeled. Different languages expressing properties
of, e.g., elementary objects, object sequences, or sets of sequences correspond to
different model levels.

A crucial innovation feature of methods presented here is the fact that to de-
fine patterns describing examples of a lower ontology level, classifiers constructed
for these concepts are used.

The example construction process for higher ontology level concepts on the
basis of lower level concepts proceeds in the following way. Objects which are
positive and negative examples of lower ontology level concepts are elements of a
certain relational structure domain. Relations occurring in such a structure ex-
press relations between these objects and may be used to extract sets of objects
of the lower ontology level. Each extracted set of objects is also a domain of a
certain relational structure, in which relations are defined using information from
a lower level. The process of extraction of relational structures is performed in
order to approximate a higher ontology level concept with the help of lower on-
tology level concepts. Hence, to extract relational structures we necessarily need
the information about membership of lower level objects to the concepts from
this level. Such information may be available for any tested object based on the
application of previously created classifiers for the lower ontology level concepts.
Let us note that classifiers stratifying concepts are of a special importance here.
The language in which we define formulas (patterns) to extract new relational
structures using relational structures and lower ontology level concepts, is called
the language for extracting relational structures (ERS-language).

For relational structures extracted in such a way, properties (attributes) may
be defined which lead to an information system whose objects are extracted
relational structures and the attributes are the properties of these structures
(RS-information system). Relational structure properties may be defined using
patterns which are formulas in a language specially constructed for this purpose,
i.e., in a language for definnig features of relational structures (FRS-language).
For example, some of the languages used to define the properties of extracted
relational structures, presented in this paper, use elements of temporal logics
with linear time, e.g., Linear Temporal Logic (see, e.g., [51, 63, 85]).

Objects of RS-information system are often inappropriate to make their
properties relevant for the approximation of the higher ontology level concepts.
It is due to the fact that there are too many such objects and their descriptions
are too detailed. Hence, when applied to the higher ontology level concept ap-
proximation, the extension of the created classifier would be too low, that is, the
classifier would classify too small number of tested objects. Apart from that, the
problem of computational complexity would appear which means that because
of a large number of objects in such information systems, the number of objects
in a linking table, constructed in order to approximate concepts determined in a
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set of objects of a complex structure, would be too large to construct a classifier
effectively (see below).

That is why a grouping (clustering) of such objects is applied which leads to
obtaining more general objects, i.e., clusters of relational structures. This group-
ing may take place using a language chosen by an expert and called the language
for extracting clusters of relational structures (ECRS-language). Within this
language, a family of patterns may be selected to extract relevant clusters of
relational structures from the initial information system.

For the clusters of relational structures obtained, an information system may
be constructed whose objects are clusters defined by patterns from this family,
and the attributes are the properties of these clusters. The properties of these
clusters may be defined by patterns which are formulas of a language specially
constructed for this purpose, i.e., a language for defining features of clusters
of relational structures (FCRS-language). For example, some of the languages
assigned to define the properties of relational structure clusters presented in
this paper use elements of temporal logics with branching time, e.g., Branching
Temporal Logic (see, e.g., [51, 63, 85]).

The information system with objects which are clusters of relational struc-
tures (CRS-information system) may already be used to approximate the con-
cept of the higher ontology level. In order to do this, a new attribute is added
to the system by the expert informs about membership of individual clusters to
the concept approximated, and owing to that we obtain an approximation table
of a higher ontology concept.

The method of construction of the approximation table of a higher ontology
level concept may be generalized for concepts determined on a set of structured
objects, that is, ones consisting of a set of parts (e.g., a group of vehicles on the
road, a group of interacting illnesses, a robot team performing a task together).
This generalization means that CRS-information systems constructed for indi-
vidual parts may be linked in order to obtain an approximation table of a higher
ontology level concept determined for structured objects. Objects of this table
are obtained through an arrangement (linking) of all possible objects of linked
information systems. From the mathematical point of view this assumption is a
Cartesian product of sets of objects of linked information systems. However, in
terms of domain knowledge not all object links belonging to such a Cartesian
product are possible (see [33, 269–271]). For example, if we approximate the con-
cept of safe overtaking, it makes sense to arrange objects concerning only such
vehicle pairs which are in the process of the overtaking maneuver.

For the reason mentioned above, that is, elimination of unrealistic complexes
of objects, the so-called constraints are defined that are formulas built on the
basis of arranged object features. The constraints determine which objects may
be arranged in order to obtain an example of an object from a higher level
and which may not. Additionally, we assume that to each arrangement allowed
by the constraints, the expert adds a decision value informing whether a given
arrangement belongs ore does not belong to the approximated concept of a higher
level.
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The table constructed in such a way serves the purpose of the approximation
of a concept describing structured objects. However, in order to approximate
a concept concerning structured objects, it is often necessary to construct not
only all parts of the structured object but also features describing relations be-
tween parts. For example, driving one vehicle after another, apart from features
describing the behavior of those two vehicles separately, features describing the
location of these vehicles in relation to one another as well ought to be con-
structed. That is why in construction of a table of concept approximation for
structured objects, there is constructed an additional CRS-information system
whose attributes entirely describe the whole structured object in terms of rela-
tions between the parts of this object. In approximation of the object concerning
structured objects, this system is arranged together with other CRS-information
systems constructed for individual parts of the structured objects.

A fundamental problem in construction of an approximation table of a higher
ontology level concept is, therefore, the choice of four appropriate languages
used during its construction. The first language serves the purpose of defining
patterns in a set of examples of a concept of lower ontology level which enable the
relational structure extraction. The second one enables to define the properties
of these structures. The third one makes possible to define relational structure
clusters and, finally, the fourth one, the properties of these clusters. All these
languages must be defined in such a way as to make the properties of the created
relational structure clusters useful on a higher ontology level for approximation of
the concept occurring there. Moreover, when the approximated concept concerns
structured objects, each of the parts of this type of objects may require another
four the languages similar to those already mentioned above.

Definitions of the above four languages depends on the semantical difference
between concepts from both ontology levels. In the paper, the above methodology
is applied in the three following cases in which the above four languages are
defined in a completely different way:

1. The concept of the higher ontology level is a spatial concept (it does not
require observing changes of objects over time) and it is defined on the set
of the same objects (examples) as concepts of the lower ontology level, and
at the same time the lower ontology level concepts are also spatial concepts
(see Case 1 from Fig. 1).

2. The concept of the higher ontology level is a spatio-temporal concept (it
requires observing object changes over time) and it is defined on a set of
the same objects (examples) as the lower ontology level concepts. Moreover,
the lower ontology level concepts are spatial concepts exclusively (see Case
2 from Fig. 1).

3. The concept of the higher ontology level is a spatio-temporal concept defined
on a set of objects which are structured objects in relation to objects (exam-
ples) of the lower ontology level concepts, that is, the lower ontology level
objects are parts of objects from the higher ontology level. Additionally, and
at the same time the lower ontology level concepts are also spatio-temporal
concepts (see Case 3 from Fig. 1).
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Fig. 1. Three cases of complex concepts approximation in ontology

Methods described in the next three subsections concern the above three
cases. These methods also found application in construction of methods of be-
havioral pattern identification and in automated planning.

Methods of Approximation of Spatial Concepts. In the paper, the method
of approximating concepts from ontology is proposed when a higher ontology
level concept is a spatial concept (not requiring an observation of changes over
time) and it is defined on a set of the same objects (examples) as the lower
ontology level concepts; at the same time, the lower level concepts are also spatial
concepts. An exemplary situation of this type is an approximation of the concept
of Safe overtaking (concerning single vehicles on the road) using concepts such
as Safe distance from the opposite vehicle during overtaking, Possibility of going
back to the right lane and Possibility of safe stopping before the crossroads.

The concept approximation method described in this subsection is an ex-
ample of the general methodology of approximating concepts from ontology
described previously. That is why its specificity is the domain knowledge us-
age expressed in the form of a concept ontology and application of rough set
methods, mainly in terms of application of classifier construction methods.

The basic terms used in the presented method is pattern and production rule.
Patterns are descriptions of examples of concepts from an ontology and they
are constructed by classifiers stratifying these concepts. A production rule is
a decision rule which is constructed on two adjacent levels of ontology. In the
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predecessor of this rule there are patterns for the concepts from the lower level of
the ontology whereas in the successor, there is a pattern for one concept from the
higher level of the ontology (connected with concepts from the rule predecessor)
where both patterns from the predecessor and the successor of the rule are chosen
from patterns constructed earlier for concepts from both adjacent levels of the
ontology. A rule constructed in such a way may serve as a simple classifier or an
argument “for”/“against” the given concept, enabling classification of objects
which match the patterns from the rule predecessor with the pattern from the
rule successor. In the paper, there is proposed an algorithmic method of induction
of production rules, consisting in an appropriate search for data tables with
attributes describing the membership of training objects to particular layers
of concepts (see Section 5.4). These tables are constructed using the so-called
constraints between concepts thanks to which the information put in the tables
only concerns those objects/examples which might be found there according to
the production rule under construction.

Although a single production rule may be used as a classifier for the concept
appearing in a rule successor, it is not a complete classifier yet, i.e., classifying
all objects belonging to an approximated concept and not only those match-
ing patterns of a rule predecessor. Therefore, in practice, production rules are
grouped into the so-called productions (see Section 5.3), i.e., production rule
collections, in a way that each production contains rules having patterns for
the same concepts in a predecessor and the successor, but responding to their
different layers. Such production is able to classify much more objects than a
single production rule where these objects are classified into different layers of
the concept occurring in a rule successor. Both productions and production rules
themselves are only constructed for the two adjacent levels of ontology. There-
fore, in order to use the whole ontology fully, there are constructed the so-called
AR-schemes, i.e., approximate reasoning schemes (see, e.g., [28, 31, 74, 143, 144,
235–237, 239, 240]) which are hierarchical compositions of production rules (see
Section 5.7). The synthesis of an AR-scheme is carried out in a way that to
a particular production from a lower hierarchical level of the AR-scheme under
construction another production rule on a higher level may be attached, but only
that one where one of the concepts for which the pattern occurring in the prede-
cessor was constructed is the concept connected with the rule successor from the
previous level. Additionally, it is required that the pattern occurring in a rule
predecessor from the higher level is a subset of the pattern occurring in a rule
successor from the lower level (in the sense of inclusion of object sets matching
both patterns). To the two combined production rules other production rules
can be attached (from above, from below or from the side) and in this way a
multilevel structure is made which is a composition of many production rules.
The AR-scheme constructed in such a way can be used as a hierarchical classifier
whose entrance are predecessors of production rules from the lowest part of the
AR-scheme hierarchy and the exit is the successor of a rule from the highest
part of the AR-scheme hierarchy. That way, each AR-scheme is a classifier for
a concept occurring in the rule successor from the highest part in the hierarchy

20



of the scheme and, to be precise, for a concept for which a pattern occurring in
the rule successor from the highest part in the hierarchy of the AR-scheme is
determined.

However, similarly to the case of a single production rule, an AR-scheme is
not a full classifier yet. That is why, in practice, for a particular concept there
are many AR-schemes constructed which approximate different layers or concept
regions.

In this paper, there are proposed two approaches for constructing AR-schemes
(see Section 5.7). The first approach is based on memory with AR-schemes and
consists in building many AR-schemes after determining production, which later
on are stored and used for the classification of tested objects.

The second approach is based on a dynamic construction of AR-schemes.
It is realized in a way that during classification of a given tested object, an
appropriate AR-schemes for classifying this particular object is built on the
basis of a given collection of productions (“lazy” classification).

In order to test the quality and effectiveness of classifier construction methods
based on AR-schemes, experiments on data generated from the traffic simulator
were performed (see Section 5.8). The experiments showed that classification
quality obtained through classifiers based on AR-schemes is higher than classi-
fication quality obtained through traditional classifiers based on decision rules.
Apart from that, the time spent on classifier construction based on AR-schemes
is shorter than when constructing classical rule classifiers, their structure is less
complicated than that of classical rule classifiers (a considerably smaller average
number of decision rules), and their performance is much more stable because
of the differences in data in samples supplied for learning (e.g., to change the
simulation scenario).

Methods of Approximation of Spatio-temporal Concepts. We also pro-
pose a method of approximating concepts from ontology when a higher ontology
level concept is a spatio-temporal concept (it requires observing changes of com-
plex objects over time) defined on a set of the same objects as the lower ontology
level concepts; at the same time, the lower ontology level concepts are spatial
concepts only. This case concerns a situation when during an observation of a
single object in order to capture its behavior described by a higher ontology
level concept, we have to observe it longer than it requires to capture behaviors
described by lower ontology level concepts. For example, lower ontology level
concepts may concern simple vehicle behaviors such as small increase in speed,
small decrease in speed or small move towards the left lane. However, the higher
ontology level concept may be a more complex concept as, e.g., acceleration in
the right lane. Let us notice that determining whether a vehicle accelerates in
the right lane requires its observation for some time called a time window. On
the other hand, determining whether a vehicle speed increases in the right lane
requires only a registration of the speed of a vehicle in two neighboring instants
(time points) only. That is why spatio-temporal concepts are more difficult to
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approximate than spatial concepts whose approximation does not require ob-
serving changes of objects over time.

Similarly to spatial concept approximation (see above), the method of con-
cept approximation described in this subsection is an example of the general
methodology of approximating concepts from ontology described earlier. Its
specificity is, therefore, the domain knowledge usage expressed in the form of
a concept ontology and rough set method application, mainly in terms of ap-
plication of classifier construction methods. However, in this case more complex
ontologies are used, and they contain both spatial and spatio-temporal concepts.

The starting point for the method proposed is a remark that spatio-temporal
concept identification requires an observation of a complex object over a longer
period of time called a time window (see Section 6.4). To describe complex object
changes in the time window, the so-called temporal patterns (see Section 6.6)
are used, which are defined as functions determined on a given time window.
These patterns, being in fact formulas from a certain language, also characterize
certain spatial properties of the complex object examined, observed in a given
time window. They are constructed using lower ontology level concepts and that
is why identification whether the object belongs to these patterns requires the
application of classifiers constructed for concepts of the lower ontology level.

On a slightly higher abstraction level, the spatio-temporal concepts (also
called temporal concepts) are directly used to describe complex object behav-
iors (see Section 6.5). Those concepts are defined by an expert in a natural
language and they are usually formulated using questions about the current sta-
tus of spatio-temporal objects, e.g., Does the vehicle examined accelerate in the
right lane?, Does the vehicle maintain a constant speed during lane changing?
The method proposed here is based on approximating temporal concepts us-
ing temporal patterns with the help of classifiers. In order to do this a special
decision table is constructed called a temporal concept table (see Section 6.9).
The rows of this table represent the parameter vectors of lower level ontology
concepts observed in a time window (and, more precisely, clusters of such pa-
rameter vectors). Columns of this table (apart from the last one) are determined
using temporal patterns. However, the last column represents membership of an
object, described by parameters (features, attributes) from a given row, to the
approximated temporal concept.

Temporal concepts may be treated as nodes of a certain directed graph which
is called a behavioral graph. Links (directed edges) in this graph are the temporal
relations between temporal concepts meaning a temporal sequence of satisfying
two temporal concepts one after another. These graphs are of a great significance
in complex objects approximation for structured objects (see below).

Methods of Approximation of Spatio-temporal Concepts for Struc-
tured Objects. The method of spatio-temporal concept approximation pre-
sented in the previous subsection is extended to the case when higher ontology
level concepts are defined on a set of objects which are structured objects in
relation to objects (examples) of the lower ontology level concepts, that is, the
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lower ontology level objects are parts of objects from the higher ontology level.
Moreover, lower ontology level concepts are also spatio-temporal concepts. This
case concerns a situation when during a structured object observation, which
serves the purpose of capturing its behavior described by a higher ontology level
concept, we must observe this object longer than it is required to capture the
behavior of a single part of the structured object described by lower ontology
level concepts. For example, lower ontology level concepts may concern complex
behaviors of a single vehicle such as acceleration in the right lane, acceleration
and changing lanes from right to left, decelerating in the left lane. However, a
higher ontology level concept may be an even more complex concept describing
behavior of a structured object consisting of two vehicles (the overtaking and
the overtaken one) over a certain period of time, for example, the overtaking
vehicle changes lanes from right to left, whereas the overtaken vehicle drives in
the right lane. Let us notice that the behavior described by this concept is a cru-
cial fragment of the overtaking maneuver and determining whether the observed
group of two vehicles behaved exactly that way, requires observing a sequence of
behaviors of vehicles taking part in this maneuver for a certain period of time.
They may be: acceleration in the right lane, acceleration and changing lanes from
right to left, maintaining a stable speed in the right lane.

Analogously to the case of spatial and spatio-temporal concept approxima-
tion for unstructured objects, the method of concept approximation described
in this subsection is an example of the general methodology of approximating
concepts from ontology described previously. Hence, its specificity is also the do-
main knowledge usage expressed in the form of a concept ontology and rough set
methods. However, in this case, ontologies may be extremely complex, contain-
ing concepts concerning unstructured objects, concepts concerning structured
objects as well as concepts concerning relations between parts of structured ob-
jects.

The starting point for the proposed method is the remark that spatio-temporal
concept identification concerning structured objects requires observing changes
of these objects over a longer period of time (the so-called longer time win-
dows) than in the case of complex objects which are parts of structured objects.
Moreover, spatio-temporal concept identification concerning structured objects
requires not only an observation of changes of all constituent parts of a given
structured object individually, but also an observation of relations between these
constituent parts and changes concerning these relations. Therefore, in order to
identify spatio-temporal concepts concerning structured objects in behavioral
graphs, we may observe paths of their constituent objects corresponding to con-
stituent part behaviors in a given period. Apart from that paths in behavioral
graphs describing relation changes between parts of structured objects should be
observed. The properties of these paths may be defined using functions which we
call temporal patterns for temporal paths (see Section 6.17). These patterns, be-
ing in fact formulas from a certain language, characterize spatio-temporal prop-
erties of the examined structured object in terms of its parts and constraints
between these parts. On a slightly higher abstraction level, to describe behav-
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iors of structured objects, the so-called temporal concepts for structured objects
(see Section 6.20) are used, which are defined by an expert in a natural language
and formulated usually with the help of questions about the current status of
structured objects, e.g., Does one of the two observed vehicles approach the other
driving behind it in the right lane?, Does one of the two observed vehicles change
lanes from the right to the left one driving behind the second vehicle?

The method of temporal concept approximation concerning structured ob-
jects, proposed here, is based on approximation of temporal concepts using tem-
poral patterns for paths in behavioral graphs of parts of structured objects with
the usage of temporal patterns for paths in behavioral graphs reflecting rela-
tion changes between the constituent parts. In order to do this a special decision
table is constructed called a temporal concept table of structured objects (see Sec-
tion 6.20). The rows of this table are obtained by arranging feature (attribute)
value vectors of paths from behavioral graphs corresponding to parts of the
structured objects observed in the data set (and, more precisely, value vectors
of cluster features of such paths) and value vectors of path features from the be-
havioral graph reflecting relation changes between parts of the structured object
(and, more precisely, value vectors of cluster features of such paths). From the
mathematical point of view such an arrangement is a Cartesian product of linked
feature vectors. However, in terms of domain knowledge not all links belonging
to such a Cartesian product are possible and making sense (see [33, 269–271]).

According to the general methodology presented above, to eliminate such
arrangements of feature vectors that are unreal or do not make sense, we define
the so-called constraints which are formulas obtained on the basis of values
occurring in the vectors arranged. The constraints determine which vectors may
be arranged in order to obtain an example of a concept from a higher level and
which may not. Additionally, we assume that to each feature vector arrangement,
acceptable by constraints, the expert adds the decision value informing about
the fact whether a given arrangement belongs to the approximated concept from
the higher level.

Methods of Behavioral Pattern Identification. Similarly to the case of
spatio-temporal concepts for unstructured complex objects, the spatio-temporal
concepts defined for structured objects may also be treated as nodes of a certain
directed graph which is called a behavioral graph for a structured object (see
Section 6.22).

These graphs may be used to represent and identify the so-called behavioral
patterns which are complex concepts concerning dynamic properties of complex
structured objects expressed in a natural language depending on time and space.
Examples of behavioral patterns may be: overtaking on the road, driving in a
traffic jam, behavior of a patient connected with a high life threat. These types
of concepts are much more difficult to approximate even than many temporal
concepts.

In the paper, a new method of behavioral pattern identification is presented
which is based on interpreting the behavioral graph of a structured object as
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a complex classifier enabling identification of a behavioral pattern described by
this graph. This is possible based on the observation of the structured object
behavior for a longer time and checking whether the behavior matches the chosen
behavioral graph path. If this is so, then it is determined if the behavior matches
the behavioral pattern represented by this graph, which enables a detection of
specific behaviors of structured objects (see Section 6.23).

The effective application of the above behavioral pattern identification me-
thod encounters, however, two problems in practice. The first of them concerns
extracting relevant context for the parts of structured objects (see the fourth
problem from Section 1.2). To solve this problem a sweeping method, enabling
a rapid structured object extraction, is proposed in this paper. This method
works on the basis of simple heuristics called sweeping algorithms around complex
objects which are constructed with the use of a domain knowledge supported by
data sets (see Section 6.13).

The second problem appearing with behavioral pattern identification is the
problem of fast elimination of such objects that certainly do not match a given
behavioral pattern (see the fifth problem from Section 1.2). As one of the meth-
ods of solving this problem, we proposed the so-called method of fast elimination
of specific behavioral patterns in relation to the analyzed structured objects. This
method is based on the so-called rules of fast elimination of behavioral patterns
which are determined from the data and on the basis of a domain knowledge (see
Section 6.24). It leads to a great acceleration of behavioral pattern identifica-
tion because such structured objects, whose behavior certainly does not match
a given behavioral pattern, may be very quickly eliminated. For these objects it
is not necessary to apply the method based on behavioral graphs which greatly
accelerates the global perception.

In order to test the quality and effectiveness of classifier construction methods
based on behavioral patterns, there have been performed experiments on data
generated from the road simulator and medical data connected to detection of
higher-death risk in infants suffering from the respiratory failure (see Section 6.25
and Section 6.26). The experiments showed that the algorithmic methods pre-
sented in this paper provide very good results in detecting behavioral patterns
and may be useful with complex dynamical systems monitoring.

Methods of Automated Planning. Automated planning methods for un-
structured complex objects were also worked out. These methods work on the
basis of data sets and a domain knowledge represented by a concept ontology.
A crucial novelty in the method proposed here, in comparison with the already
existing ones, is the fact that performing actions according to plan depends
on satisfying complex vague spatio-temporal conditions expressed in a natural
language, which leads to the necessity of approximation of these conditions as
complex concepts. Moreover, these conditions describe complex concept changes
which should be reflected in the concept ontology.

Behavior of unstructured complex objects is modeled using the so-called plan-
ning rules being formulas of the type: the state before performing an action →
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action → state 1 after performing an action | ... | state k after performing an
action, which are defined on the basis of data sets and a domain knowledge (see
Section 7.4). Each rule includes the description of the complex object state before
applying the rule (that is, before performing an action), expressed in a language
of features proposed by an expert, the name of the action (one of the actions
specified by the expert which may be performed at a particular state), and the
description of sequences of states which a complex object may turn into after ap-
plying the action mentioned above. It means that the application of such a rule
gives indeterministic effects, i.e., after performing the same action the system
may turn into different states. All planning rules may be represented in a form
of the so-called planning graphs whose nodes are state descriptions (occurring
in predecessors and successors of planning rules) and action names occurring in
planning rules (see Section 7.4). In the graphical interpretation, solving the prob-
lem of automated planning is based on finding a path in the planning graph from
the initial state to an expected final state. It is worth noticing that the conditions
for performing an action (object states) are described by vague spatio-temporal
complex concepts which are expressed in the natural language and require an
approximation.

For specific applications connected with the situation when it is expected that
the proposed plan of a complex object behavior is to be strictly compatible with
the determined experts’ instructions (e.g., the way of treatment in a specialist
clinic is to be compatible with the treatment schemes used there), there has also
been proposed an additional mechanism enabling to resolve the nondeterminism
occurring in the application of planning rules. This mechanism is an additional
classifier based on data sets and domain knowledge. Such classifiers suggest the
action to be performed in a given state and show the state which is the result of
the indicated action (see Section 7.7).

The automated planning method for unstructured objects has been gener-
alized in the paper also in the case of planning of the behavior of structured
objects (consisting of parts connected with one another by dependencies). The
generalization is based on the fact that on the level of a structured object there
is an additional planning graph defined where there are double-type nodes and
directed edges between the nodes (see Section 7.11). The nodes of the first type
describe vague features of states (meta-states) of the whole structured object,
whereas the nodes of the second type concern complex actions (meta-actions)
performed by the whole structured object (all its constituent parts) over a longer
period of time (a time window). The edges between the nodes represent tempo-
ral dependencies between meta-states and meta-actions as well as meta-actions
and meta-states. Similarly to the previous case of unstructured objects, planning
of a structured object behavior is based on finding a path in a planning graph
from the initial meta-state to the expected final meta-state; and, at the same
time, each meta-action occurring in such a path must be planned separately on
the level of each constituent part of the structured object. In other words, it
should be planned what actions each part of a structured object must perform
in order for the whole structured object to be able to perform the meta-action
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which has been planned. During the planning of a meta-action a synchroniza-
tion mechanism (determining compatibility) of plans proposed for the part of
a structured object is used, which works on the basis of a family of classifiers
determined on the basis of data sets with a great support of domain knowledge.
Apart from that, an additional classifier is applied (also based on a data set and
the domain knowledge) which enables to determine whether the juxtaposition
and execution of plans determined for the constituent parts, in fact, lead to the
execution of the meta-action planned on the level of the whole structured object
(see Section 7.13).

During the attempt to execute the plan constructed there often appears a
need to reconstruct the plan which means that during the plan execution there
may appear such a state of a complex object that is not compatible with the
state suggested by the plan. A total reconstruction of the plan (building the
whole plan from the beginning) may computationally be too costly. Therefore,
we propose another plan reconstruction method called a partial reconstruction.
It is based on constructing a short so-called repair plan, which rapidly brings the
complex object to the so-called return state which appears in the current plan.
Next, on the basis of the repair plan, a current plan reconstruction is performed
through replacing its fragment beginning with the current state and ending with
the return plan with the repair plan (see Section 7.9 and Section 7.17).

In construction and application of classifiers approximating complex spatio-
temporal concepts, there may appear a need to construct, with a great support
of the domain knowledge, a similarity relation of two elements of similar type,
such as complex objects, complex object states, or plans generated for complex
objects. Hence, in this paper we propose a new method of similarity relation
approximation based on the use of data sets and a domain knowledge expressed
mainly in the form of a concept ontology. We apply this method, among other
things, to verify automated planning methods, that is, to compare the plan
generated automatically with the plan suggested by experts from a given domain
(see Section 7.18, Section 7.19 and Section 7.20).

In order to check the effectiveness of the automated planning methods pro-
posed here, there were performed experiments concerning planning of treatment
of infants suffering from the respiratory failure (see Section 7.21). Experimental
results showed that the proposed method gives good results, also in the opinion
of medical experts (compatible enough with the plans suggested by the experts),
and may be applied in medical practice as a supporting tool for planning of the
treatment of infants suffering from the respiratory failure.

Implementation and Data Sets. The result of the works conducted is also a
programming system supporting the approximation of spatio-temporal complex
concepts in the given concept ontology in the dialogue with the user. The system
also includes an implementation of the algorithmic methods presented in this
paper and is available on the web side of RSES system (see [252, 253]).

Sections 5, 6 and 7, apart from the method description, contain the results
of computing experiments conducted on real-life data sets, supported by domain

27



knowledge. It is worth mentioning that the requirements regarding data sets
which can be used for computing experiments with modeling spatio-temporal
phenomena are much greater than the requirements of the data which are used
for testing process of classical classifiers. Not only have the data to be represen-
tative of the decision making problem under consideration but also they have to
be related to the domain knowledge available (usually cooperation with experts
in a particular domain is essential). It is important that such data should fully
and appropriately reflect complex spatio-temporal phenomena connected to the
environment of the data collected.

The author of the paper acquired such data sets from two sources. The first
source of data is the traffic simulator made by the author (see Appendix A). The
simulator is a computing tool for generating data sets connected to the traffic
on the street and at crossroads. During simulation each vehicle appearing on
the simulation board behaves as an independently acting agent. On the basis
of observation of the surroundings (other vehicles, its own location, weather
conditions, etc.) this agent makes an independent decision what maneuvers it
should make to achieve its aim which is to go safely across the simulation board
and to leave the board using the outbound way given in advance. At any given
moment of the simulation, all crucial vehicle parameters may be recorded, and
thanks to this data sets for experiments can be obtained.

The second collection of data sets used in computer experiments was pro-
vided by Neonatal Intensive Care Unit, First Department of Pediatrics, Polish-
American Institute of Pediatrics, Collegium Medicum, Jagiellonian University,
Krakow, Poland. This data constitutes a detailed description of treatment of 300
infants, i.e., treatment results, diagnosis, operations, medication (see Section 6.26
and Appendix B).

1.4 Organization of the Paper

This paper is organized as follows. In Section 2 we briefly describe selected
classical methods of classifier construction and concept approximation which
are used in next subsections of the paper. These methods are based on rough
set theory achievements and were described in the author’s previous papers (see,
e.g., [10–13, 21, 23, 35–37, 39]).

In Section 3 we describe methods of construction of a concept stratifying
classifier.

The general methodology of approximating concepts with the use of data sets
and a domain knowledge represented mainly in the form of a concept ontology
is described in Section 4.

Methods of approximating spatial concepts from ontology are described in
Section 5, whereas methods of approximating spatio-temporal concepts from
ontology and methods of behavioral patterns identification are described in Sec-
tion 6.

Methods of automated planning of complex object behavior when object
states are represented with the help of complex objects requiring an approx-
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imation with the use of data sets and a domain knowledge are presented in
Section 7.

Finally, in Section 8 we summarize the results and give directions for the
future research.

The paper also contains two appendixes. The first appendix contains the
description of the traffic simulator used to generate experimental data (see Ap-
pendix A). The second one describes medical issues connected with the infant
respiratory failure (see Appendix B) concerning one of the data sets used for
experiments.

2 Classical Classifiers

In general, the term classify means arrange objects in a group or class based
on shared characteristics (see [183]). In this work, the term classification has a
special meaning, i.e., classification connotes any context in which some decision
or forecast about object grouping is made on the basis of currently available
knowledge or information (see, e.g., [9, 175]).

A classification algorithm (classifier) is an algorithm which enables us to
make a forecast repeatedly on the basis of accumulated knowledge in new situ-
ations (see, e.g., [175]). Here we consider the classification provided by a classi-
fying algorithm which is applied to a number of cases to classify objects unseen
previously. Each new object is assigned to a class belonging to a predefined set
of classes on the basis of observed values of suitably chosen attributes (features).

Many approaches have been proposed to construct classification algorithms.
Among them we would like to mention classical and modern statistical techniques
(see, e.g., [175, 247]), neural networks (see, e.g., [88, 175, 247]), decision trees
(see, e.g., [60, 61, 104, 175, 243, 244, 320, 322]), decision rules (see, e.g., [49, 64,
114, 115, 172–176, 195, 278, 284, 285]) and inductive logic programming (see, e.g.,
[81, 175]).

In this section, we consider methods implemented in our system RSES (Rough
Set Exploration System) (see [20, 38–41, 303, 306, 307]). RSES is a computer soft-
ware system developed for the purpose of data analysis (the data is assumed to
be in the form of an information system or a decision table, see Section 2.1). In
construction of classifiers, which is the main step in the process od data analysis
with RSES, elements of rough set theory are used. In this paper, we call these
algorithms the standard RSES methods of classifier construction.

The majority of the standard RSES methods of classifier construction have
been applied in more advanced methods of classifier construction, which will
be presented in Sections 3, 5, 6, and 7. Therefore, in this section we only give
a brief overview of that methods of classifier construction. These methods are
based on rough set theory (see [217, 221, 232]). In the Section 2.1 we start with
introduction of basic rough set terminology and notation, necessary for the rest
of this paper (see Section 2.1).

The analysis of data in the RSES system proceeds according to the scheme
presented in Fig. 2. First, the data for analysis has to be loaded/imported into
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Fig. 2. The RSES data analysis process

the system. Next, in order to have a better chance for constructing (learning)
a proper classifier, it is frequently advisable to transform the initial data set.
Such transformation, usually referred to as preprocessing, may consist of several
steps. RSES supports preprocessing methods which make it possible to manage
missing parts in data, discretize numeric attributes, and create new attributes
(see [39] and Section 2.2 for more details).

When the data is preprocessed, we can be interested in learning about its
internal structure. By using classical rough set concepts such as reducts (see
Section 2.1), dynamic reducts (see [10, 11, 13, 35–37, 39]), and positive region (see
Section 2.1) one can discover dependencies that occur in our data set. Knowledge
of reducts can lead to reduction of data by removing some of the redundant
attributes.

Next, the classifier construction may be started. In the RSES system, these
classifiers may be constructed using various methods (see [39] and sections 2.3,
2.4, 2.5, 2.6, 2.7 for more details).

A classifier is constructed on the basis of a training set consisting of labeled
examples (objects with decisions). Such a classifier may further be used for
evaluation on a test set or applied to new, unseen and unlabeled cases in order
to determine the value of decision (classification) for them (see Section 2.9).

If the quality of the constructed classifier is insufficient, one may return to
data preprocessing and/or knowledge reduction; another method of classifier
construction may be applied as well.

2.1 Rough Set Basic Notions

In order to provide a clear description further in the paper and to avoid any
misunderstandings, we bring here some essential definitions from rough set the-
ory. We will frequently refer to the notions introduced in this section. Quite a
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comprehensive description of notions and concepts related to the classical rough
set theory may be found in [144].

An information system (see [217, 221]) is a pair A = (U,A) where U is a
non-empty, finite set called the universe of A and A is a non-empty, finite set of
attributes, i.e., mappings a : U → Va, where Va is called the value set of a ∈ A.

Elements of U are called objects and interpreted as, e.g., cases, states, pro-
cesses, patients, observations. Attributes are interpreted as features, variables,
characteristic conditions.

We also consider a special case of information systems called decision tables.
A decision table is an information system of the form A = (U,A, d) where d 6∈ A
is a distinguished attribute called the decision. The elements of A are called
condition attributes or conditions.

One can interpret the decision attribute as a kind of partition of the universe
of objects given by an expert, a decision-maker, an operator, a physician, etc. In
machine learning decision tables are called training sets of examples (see [172]).

The cardinality of the image d(U) = {k : d(s) = k for some s ∈ U} is called
the rank of d and is denoted by r(d).

We assume that the set Vd of values of the decision d is equal to {v1
d, ..., v

r(d)
d }.

Let us observe that the decision d determines a partition CLASSA(d) =
{X1

A, . . . , X
r(d)
A } of the universe U where Xk

A = {x ∈ U : d(x) = vk
d} for

1 ≤ k ≤ r(d). CLASSA(d) is called the classification of objects of A determined
by the decision d. The set Xi

A is called the i-th decision class of A. By XA(u)
we denote the decision class {x ∈ U : d(x) = d(u)}, for any u ∈ U .

Let A = (U,A) be an information system. For every set of attributes B ⊆ A,
an equivalence relation, denoted by INDA(B) and called the B-indiscernibility
relation, is defined by

INDA(B) = {(u, u′) ∈ U × U : ∀a∈B a(u) = a(u′)}. (1)

Objects u, u′ being in the relation INDA(B) are indiscernible by attributes from
B.

By [u]INDA(B) we denote the equivalence class of the relation INDA(B),
such that u belongs to this class.

An attribute a ∈ B ⊆ A is dispensable in B if INDA(B) = INDA(B \ {a}),
otherwise a is indispensable in B. A set B ⊆ A is independent in A if every
attribute from B is indispensable in B, otherwise the set B is dependent in A.
A set B ⊆ A is called a reduct in A if B is independent in A and INDA(B) =
INDA(A). The set of all reducts in A is denoted by REDA(A). This is the
classical notion of a reduct and it is sometimes referred to as global reduct.

Let A = (U,A) be an information system with n objects. By M(A) (see
[267]) we denote an n×n matrix (cij), called the discernibility matrix of A, such
that

cij = {a ∈ A : a(xi)6=a(xj)} for i, j = 1, . . . , n . (2)

A discernibility function f A for an information system A is a Boolean func-
tion of m Boolean variables a1, . . . , am corresponding to the attributes a1, . . . , am,
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respectively, and defined by

fA(a1, . . . , am) =
∧
{
∨

cij : 1 ≤ j < i ≤ n ∧ cij 6=∅}, (3)

where cij = {a : a ∈ cij}.
It can be shown (see [267]) that the set of all prime implicants of fA deter-

mines the set of all reducts of A.
We present an exemplary deterministic algorithms for computation of the

whole reduct set REDA(A) (see, e.g., [21]). This algorithm computes the dis-
cernibility matrix of A (see Algorithm 2.1).

Algorithm 2.1: Reduct set computation
Input: Information system A = (U,A)
Output: Set REDA(A) of all reducts of A
begin1

Compute indiscernibility matrix M(A)2

Reduce M(A) using absorbtion laws3

// Let C1, ..., Cd are non-empty fields of reduced M(A)
Build a familie of sets R0, R1, ..., Rd in the following way:4

begin5

R0 = ∅6

for i = 1 to d do7

Ri = Si ∪ Ti where Si = {R ∈ Ri−1 : R ∩ Ci 6= ∅}8

and Ti = (R ∪ {a})a∈Ci,R∈Ri−1:R∩Ci=∅9

end10

end11

Remove dispensable attributes from each element of family Rd12

Remove redundant elements from Rd13

REDA(A) = Rd14

end15

The time cost of the reduct set computation using the algorithm presented
above can be too high in the case the decision table consists of too many ob-
jects, attributes, or different values of attributes. The reason is that, in general,
the size of the reduct set can be exponential with respect to the size of the
decision table and the problem of the minimal reduct computation is NP-hard
(see [267]). Therefore, we are often forced to apply approximation algorithms to
obtain some knowledge about the reduct set. One way is to use approximation
algorithms that need not give optimal solutions but require a short comput-
ing time. Among these algorithms are the following ones: Johnson’s algorithm,
covering algorithms, algorithms based on simulated annealing and Boltzmann
machines, algorithms using neural networks and algorithms based on genetic
algorithms (see, e.g., [11, 13, 21] for more details).
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If A = (U,A) is an information system, B ⊆ A is a set of attributes and
X ⊆ U is a set of objects (usually called a concept), then the sets {u ∈ U :
[u]INDA(B) ⊆ X} and {u ∈ U : [u]INDA(B) ∩ X 6=∅} are called the B-lower and
the B-upper approximations of X in A, and they are denoted by BX and BX,
respectively.

The set BNB(X) = BX − BX is called the B-boundary of X (boundary
region, for short). When B = A, we also write BNA(X) instead of BNA(X).

Sets which are unions of some classes of the indiscernibility relation INDA(B)
are called definable by B (or B-definable in short). A set X is, thus, B-definable
iff BX = BX. Some subsets (categories) of objects in an information system
cannot be exactly expressed in terms of the available attributes but they can be
defined roughly.

The set BX is the set of all elements of U which can be classified with
certainty as elements of X, given a knowledge about these elements in the form
of values of attributes from B; the set BNB(X) is the set of elements of U which
one can classify neither to X nor to −X having a knowledge about objects
represented by B.

If the boundary region of X ⊆ U is the empty set, i.e., BNB(X) = ∅, then
the set X is called crisp (exact) with respect to B; in the opposite case, i.e., if
BNB(X) 6= ∅, the set X is referred to as rough (inexact) with respect to B (see,
e.g., [221]).

If X1, . . . , Xr(d) are decision classes of A, then the set BX1 ∪ · · · ∪BXr(d) is
called the B-positive region of A and denoted by POSB(d).

If A = (U,A, d) is a decision table and B ⊆ A, then we define a function
∂B : U → P(Vd), called the B-generalized decision of A, by

∂B(x) = {v ∈ Vd : ∃x′ ∈ U (x′INDA(B)x and d(x) = v)} . (4)

The A-generalized decision ∂A of A is called the generalized decision of A.
A decision table A is called consistent (deterministic) if card(∂A(x)) = 1 for

any x ∈ U , otherwise A is inconsistent (non-deterministic). Non-deterministic
information systems were introduced by Witold Lipski (see [159]), while de-
terministic information systems independently by ZdzisÃlaw Pawlak [216] (see,
also, [207, 206]). It is easy to see that a decision table A is consistent iff POSA(d) =
U . Moreover, if ∂B = ∂B′ , then POSB(d) = POSB′(d) for any pair of non-empty
sets B, B′ ⊆ A.

A subset B of the set A of attributes of a decision table A = (U,A, d) is a
relative reduct of A iff B is a minimal set with respect to the following property:
∂B = ∂A. The set of all relative reducts of A is denoted by RED(A, d).

Let A = (U,A, d) be a consistent decision table and let M(A) = (cij) be
its discernibility matrix. We construct a new matrix M ′(A) = (c′ij) assuming
c′ij = ∅ if d(xi) = d(xj), and c′ij = cij − {d} otherwise. The matrix M ′(A) is
called the relative discernibility matrix of A. Now, one can construct the relative
discernibility function fM ′(A) of M ′(A) in the same way as the discernibility
function.
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It can be shown (see [267]) that the set of all prime implicants of fM ′(A)

determines the set of all relative reducts of A.
Another important type of reducts are local reducts. A local reduct r(xi) ⊆ A

(or a reduct relative to decision and object xi ∈ U where xi is called a base object)
is a subset of A such that:

1. ∀xj∈U d(xi) 6= d(xj) =⇒ ∃ak∈r(xi) ak(xi) 6= ak(xj),
2. r(xi) is minimal with respect to inclusion.

If A = (U,A, d) is a decision table, then any system B = (U ′, A, d) such that
U ′ ⊆ U is called a subtable of A.

A template of A is a formula
∧

(ai = vi) where ai ∈ A and vi ∈ Vai
. A

generalized template is a formula of the form
∧

(ai ∈ Ti) where Ti ⊂ Vai
. An

object satisfies (matches) a template if for every attribute ai occurring in the
template, the value of this attribute at a considered object is equal to vi (belongs
to Ti in the case of the generalized template). The template splits the original
information system in the two distinct subtables containing objects that satisfy
and do not satisfy the template, respectively.

It is worth mentioning that the notion of a template can be treated as a
particular case of a more general notion, viz., that of a pattern (see Section 4.9).

2.2 Discretization

Suppose we have a decision table A = (U,A, d) where card(Va) is high for some
a ∈ A. Then, there is a very low chance that a new object is recognized by rules
generated directly from this table because the attribute value vector of a new
object will not match any of these rules. Therefore, for decision tables with real
(numerical) value attributes, some discretization strategies are built in order to
obtain a higher quality of classification. This problem was intensively studied
(see, e.g., [21, 184, 185] for more details).

The process of discretization is usually realized in two following steps (see,
e.g., [21, 39, 184, 185]). First, the algorithm generates a set of cuts. By a cut for
an attribute ai ∈ A such that Vai is an ordered set we denote a value c ∈ Vai .
The cuts can be then used to transform the decision table. As a result we obtain
a decision table with the same set of attributes but the attributes have different
values. Instead of a(x) = v for an attribute a ∈ A and an object x ∈ U , we
rather get a(x) ∈ [c1, c2] where c1 and c2 are cuts generated for attribute a by
a discretization algorithm. The cuts are generated in a way that the resulting
intervals contain possibly most uniform sets of objects w.r.t decision.

The discretization method available in RSES has two versions (see, e.g.,
[21, 39, 185]) that are usually called global and local. Both methods belong to
a bottom-up approaches which add cuts for a given attribute one-by-one in
subsequent iterations of algorithm. The difference between these two methods
lies in the way in which the candidate for a new cut is evaluated. In the global
method, we evaluate all objects in the data table at every step. In the local
method, we only consider a part of objects that are related to the candidate
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cut, i.e., which have the value of the attribute considered currently in the same
range as the cut candidate. Naturally, the second (local) method is faster as less
objects have to be examined at every step. In general, the local method produces
more cuts. The local method is also capable of dealing with nominal (symbolic)
attributes. Grouping (quantization) of a nominal attribute domain with use of
the local method always results in two subsets of attribute values (see, e.g., [21,
39, 185] for more details).

2.3 Decision Rules

Let A = (U,A, d) be a decision table and let V =
⋃{Va : a ∈ A} ∪ Vd. Atomic

formulas over B ⊆ A ∪ {d} and V are expressions of the form a = v, called
descriptors over B and V , where a ∈ B and v ∈ Va. The set F(B, V ) of formulas
over B and V is the least set containing all atomic formulas over B, V and
closed with respect to the classical propositional connectives ∨ (disjunction), ∧
(conjunction), and ¬ (negation).

Let ϕ ∈ F(B ,V ). Then, by |ϕ|A we denote the meaning of ϕ in the decision
table A, i.e., the set of all objects of U with the property ϕ, defined inductively
by

1. if ϕ is of the form a = v, then |ϕ|A = {x ∈ U : a(x) = v},
2. |ϕ ∧ ϕ′|A = |ϕ|A ∩ |ϕ′|A,
3. |ϕ ∨ ϕ′|A = |ϕ|A ∪ |ϕ′|A,
4. |¬ϕ|A = U − |ϕ}A.

The set F(A,V ) is called the set of conditional formulas of A and is denoted
by C(A,V ).

Any formula of the form (a1 = v1) ∧ ... ∧ (al = vl) where vi ∈ Vai (for
i = 1, ..., l) and P = {a1, ..., al} ⊆ A is called a P-basic formula of A.

If ϕ is a P-basic formula of A and Q ⊆ P , then by ϕ/Q we mean the Q-basic
formula obtained from the formula ϕ by removing from ϕ all its elementary
subformulas (a = va) such that a ∈ P \Q.

A decision rule for A is any expression of the form ϕ ⇒ d = v where ϕ ∈
C(A,V ), v ∈ V d , and |ϕ|A 6= ∅. Formulas ϕ and d = v are referred to as the
predecessor (premise of the rule) and the successor of the decision rule ϕ ⇒ d = v
respectively.

If r is a decision rule in A, then by Pred(r) we denote the predecessor of r
and by Succ(r) we denote the successor of r .

An object u ∈ U is matched by a decision rule ϕ ⇒ d = vk
d (where 1 ≤ k ≤

r(d)) iff u ∈ |ϕ|A. If u is matched by ϕ ⇒ d = vk
d , then we say that the rule is

classifying u to the decision class Xk.
The number of objects matched by a decision rule ϕ ⇒ d = v, denoted by

MatchA(ϕ ⇒ d = v), is equal to card(|ϕ|A).
The number SuppA(ϕ ⇒ d = v) = card(|ϕ|A∩|d = v|A) is called the number

of objects supporting the decision rule ϕ ⇒ d = v.
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A decision rule ϕ ⇒ d = v for A is true in A, symbolically ϕ ⇒A d = v,
iff |ϕ|A ⊆ |d = v|A. If the decision rule ϕ ⇒ d = v is true in A, we say that
the decision rule is consistent in A, otherwise ϕ ⇒ d = v is inconsistent or
approximate in A.

If r is a decision rule in A, then the number µA(r) = SuppA(r)
MatchA(r) is called the

coefficient of consistency of the rule r. The coefficient µA(r) may be understood
as the degree of consistency of the decision rule r. It is easy to see that a decision
rule r for A is consistent iff µA(r) = 1.

The coefficient of consistency of r can be also treated as the degree of inclusion
of |Pred(r)|A in |Succ(r)|A (see, e.g., [238]).

If ϕ ⇒ d = v is a decision rule for A and ϕ is P-basic formula of A (where
P ⊆ A), then the decision rule ϕ ⇒ d = v is called a P-basic decision rule for
A, or a basic decision rule in short.

Let ϕ ⇒ d = v be a P-basic decision rule of A (where P ⊆ A) and let
a ∈ P . We will say that the attribute a is dispensable in the rule ϕ ⇒ d = v iff
|ϕ ⇒ d = v|A = U implies |ϕ/(P \ {a}) ⇒ d = v|A = U , otherwise attribute a
is indispensable in the rule ϕ ⇒ d = v. If all attributes a ∈ P are indispensable
in the rule ϕ ⇒ d = v, then ϕ ⇒ d = v will be called independent in A.

The subset of attributes R ⊆ P will be called a reduct of P-basic decision rule
ϕ ⇒ d = v, if ϕ/R ⇒ d = v is independent in A and |ϕ ⇒ d = v|A = U implies
|ϕ/R ⇒ d = v|A = U . If R is a reduct of the P-basic decision rule ϕ ⇒ d = v,
then ϕ/R ⇒ d = v is said to be reduced. If R is a reduct of the A-basic decision
rule ϕ ⇒ d = v, then ϕ/R ⇒ d = v is said to be an optimal basic decision rule
of A (a basic decision rule with minimal number of descriptors). The set of all
optimal basic decision rules of A is denoted by RUL(A).

2.4 Two Methods for Decision Rule Synthesis

Classifiers based on a set of decision rules are the most elaborated methods in
RSES. Several methods for calculation of the decision rule sets are implemented.
Also, various methods for transforming and utilizing rule sets are available. How-
ever, in our computer experiments we usually use two methods for decision rules
synthesis. We would like to mention those methods here.

The first method returns all basic decision rules with minimal number of
descriptors (see, e.g., [11, 13, 21, 218]). Therefore, this method is often called an
exhaustive method. From the practical point of view, the method consists in
applying an algorithm computing all reducts (see Algorithm 2.1) for each object
individually, which results in obtaining decision rules with a minimal number of
descriptors in relation to individual objects (see, e.g., [11, 13, 21]).

The second method for basic decision rule synthesis, is the covering algo-
rithm called LEM2 (see, e.g., [115, 284, 285]). In LEM2, a separate-and-conquer
technique is paired with rough set notions such as upper and lower approxima-
tions. This method tends to produce less rules than algorithms based on the
exhaustive local reduct calculation (as in the previous method) and seems to be
faster. On the downside, the LEM2 method sometimes returns too few valuable
and meaningful rules (see also Section 2.10).
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2.5 Operations on Rule Sets

In general, the methods used by RSES to generate rules may produce quite
a bunch of them. Naturally, some of the rules may be marginal, erroneous or
redundant. In order to provide a better control over the rule-based classifiers
some simple techniques for transforming rule sets should be used. The simplest
way to alter a set of decision rules is by filtering them. It is possible to eliminate
from the rule set these rules that have insufficient support on training sample, or
those that point at a decision class other than the desired one. More advanced
operations on rule sets are shortening and generalization.

Rule shortening is a method that attempts to eliminate descriptors from the
premise of the rule. The resulting rule is shorter, more general (applicable to
more training objects) but it may lose some of its precision. The shortened rule
may be less precise, i.e., it may give wrong answers (decisions) for some of the
matching training objects.

We present an exemplary method of approximate rules computation (see,
e.g., [11, 13, 21]) that we use in our experiments. We begin with an algorithm for
synthesis of optimal decision rules from a given decision table (see Section 2.4).
Next, we compute approximate rules from the optimal decision rules already
calculated. Our method is based on the notion of consistency of a decision rule
(see Section 2.1). The original optimal rule is reduced to an approximate rule
with the coefficient of consistency exceeding a fixed threshold.

Let A = (U,A, d) be a decision table and r0 ∈ RUL(A). The approximate
rule (based on rule r0) is computed using the Algorithm 2.2.
It is easy to see that the time and space complexity of Algorithm 2.2 are of
order O(l2 ·m ·n) and O(C), respectively (where l is the number of conditional
descriptors in the original optimal decision rule r0 and C is a constant).

The approximate rules, generated by the above method, can help to extract
interesting laws from the decision table. By applying approximate rules instead
of optimal rules one can slightly decrease the quality of classification of objects
from the training set but we expect, in return, to receive more general rules with
a higher quality of classification of new objects (see [11]).

On the other hand, generalization of rules is a process which consists in
replacement of the descriptors having a single attribute value in rule predecessors
with more general descriptors. In the RSES system there is an algorithm available
which instead of simple descriptors of type a(x) = v, where a ∈ A, v ∈ Va and
x ∈ U tries to use the so-called generalized descriptors of the form a(x) ∈ V
where V ⊂ Va (see, e.g., [39]). In addition, such a replacement is performed
only when the coefficient of consistency of the new rule is not smaller than the
established threshold. Let us notice that such an operation is crucial in terms of
enlargement of the extension of decision rules for the generalized decision rules
are able to classify a greater number of tested objects.

It is worth mentioning that the application of the method of generalizing
rules described above only makes sense for tables with attributes having a small
number values. Such attributes are usually attributes with symbolic values. On
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Algorithm 2.2: Approximate rule synthesis (by descriptor dropping)
Input:
1. decision table A = (U,A, d)
2. decision rule r0 ∈ RUL(A)
3. threshold of consistency µ0 (e.g., µ0 = 0.9)

Output: the approximate rule rapp (based on rule r0)
begin1

Calculate the coefficient of consistency µA(r0)2

if µA(r0) < µ0 then3

STOP // In this case no approximate rule4

end5

µmax = µA(r0) and rapp = r06

while µmax > µ0 do7

µmax = 08

for i = 1 to the number of descriptors from Pred(rapp) do9

r = rapp10

Remove i-th descriptor from Pred(r)11

Calculate the coefficient of consistency µA(r) and µ = µA(r)12

if µ > µmax then13

µmax = µ and imax = i14

end15

end16

if µmax > µ0 then17

Remove imax -th conditional descriptor from rapp18

end19

end20

return rapp21

end22
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the other hand a usage of this method for tables with numerical attributes re-
quires a previous discretization of values of these attributes.

2.6 Negotiations Among Rules

Suppose we have a set of decision rules. When we attempt to classify an object
from test sample with use of a rule set generated, it may happen that various
rules suggest different decision values. In such conflict situations, we need a
strategy to resolve controversy and reach a final result (decision). This problem
was intensively studied (see, e.g., [13, 21]). In its current version, RSES provides
a conflict resolution strategy based on voting among rules. In this method, each
rule that matches the object under consideration casts a vote in favor of the
decision value it points at. Votes are summed up and the decision is chosen that
has got majority of votes. This simple method may be extended by assigning
weights to rules. Each rule, then votes with its weight and the decision that has
the highest total of weighted votes is the final one. In RSES, this method is
known as a standard voting and is based on a basic strength (weight) of decision
rules (see Section 2.8). Of course, there are many other methods that can be used
to resolve conflicts between decision rules (see, e.g., [11, 13, 21, 115, 173, 315]).

2.7 Decomposition Trees

In the case of the decision tables larger, the computation of decision rules for
these tables can be extremely difficult or even impossible.

This problem arises from a relatively high computational complexity of rule
computing algorithms. Unfortunately, it frequently concerns covering algorithms
such as, e.g., LEM2 as well (see Section 2.4). One of the solutions to this prob-
lem is the so-called decomposition. Decomposition consists in partitioning the
entrance data table into parts (subtables) in such a way as to be able to calcu-
late decision rules for these parts using standard methods. Naturally, a method
is also necessary which would aggregate the obtained rule sets in order to build
a general classifier.

In this paper, we present a decomposition method based on a decomposition
tree (see [38, 187, 304]) which may be constructed according to Algorithm 2.3.

This algorithm creates the decomposition tree in steps where each step leads
to construction of the next level of the tree. At a given step of the algorithm
execution, a binary partition of the decision table takes place using the best
template (see Section 2.1) found for the table being partitioned. In this way,
with each tree node (leaf), there is connected a template partitioning the sub-
table in this node into objects matching and not matching the template. This
template and its contradiction are transferred as templates describing subtables
to the next step of decomposition. Decomposition finishes when the subtables
obtained are so small that the decision rules can be calculated for them using
standard methods. After determining the decomposition tree, decision rule sets
are calculated for all the leaves of this tree and, more precisely, for the subtables
occurring in single leaves.
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Algorithm 2.3: Decomposition tree synthesis
Input: decision table A = (U,A, d)
Output: the decomposition tree for the decision table A
begin1

Find the best template T in A (see Section 2.1)2

Divide A in two subtables: A1 containing all objects satisfying T and3

A2 = A−A1

if obtained subtables are of acceptable size in the sense of rough set4

methods then
STOP // The decomposition is finished5

end6

repeat lines 2-7 for all “too large” subtables7

end8

The tree and the rules calculated for training sample can be used in classifi-
cation of unseen cases. Suppose we have a binary decomposition tree. Let u be
a new object, A(T) be a subtable containing all objects matching a template T,
and A(¬T ) be a subtable containing all objects not matching a template T. We
classify object u starting from the root of the tree using Algorithm 2.4.

Algorithm 2.4: Classification by decomposition tree
begin1

if u matches template T found for A then2

go to subtree related to A(T )3

else4

go to subtree related to A(¬T )5

end6

if u is at the leaf of the tree then7

go to line 128

else9

repeat lines 2-11 substituting A(T ) (or A(¬T )) for A10

end11

Classify u using decision rules for subtable attached to the leaf12

end13

This algorithm works in such a way that such a leaf of a decomposition tree is
sought first that the tested object matches the template describing the objects of
that leaf. Next, the object is classified with the help of decision rules calculated
for the leaf that was found.

The type of the decomposition method depends on the method of determin-
ing the best template. For instance, if decomposition is needed only because it
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is impossible to compute rules for a given decision table, then the best template
for this table is the template which divides a given table into two equal parts. If,
however, we are concerned with the table partition that is most compatible with
the partition introduced by decision classes, then the measure of the template
quality may be, for example, the number of pairs of objects from different deci-
sion classes, differentiated with the help of the partition introduced by a given
template. Surely, the best template in this case is a template with the largest
number of differentiated pairs.

The patterns determined may have different forms (see, e.g., [187] for more
details). In the simplest case, for a symbolic attribute, the best template might
be of the forms a(x) = v or a(x) 6= v where a ∈ A, v ∈ Va, and x ∈ U , whereas
for a numerical attribute, the templates might be a(x) > v, a(x) < v, a(x) ≤ v,
or a(x) ≥ v where a ∈ A, v ∈ Va, and x ∈ U .

The classifier presented in this section uses a binary decision tree, however,
it should not be mistaken for C4.5 or ID3 (see, e.g., [180, 244]) because, as we
said before, rough set methods have been used in leaves of the decomposition
tree in construction of the classifying algorithm.

2.8 Concept Approximation and Classifiers

Definability of concepts is a term well-known in classical logic (see, e.g., [43, 171,
310]). In this classical approach a definable concept (set) is a relation on the do-
main of a given structure whose elements are precisely those elements satisfying
some formula in the structure. Semantics of such formula enables to determine
precisely for a given element (object) whether it belongs to the concept or not.
However, the issue of definability of concepts is somewhat complicated by the
pervasive presence of vagueness and ambiguity in natural language (see [43, 138,
139]). Therefore, in numerous applications, the concepts of interest may only be
defined approximately on the basis of available, incomplete, imprecise or noisy
information about them, represented, e.g., by positive and negative examples
(see [93, 94, 129, 142, 172, 175, 179, 247]). Such concepts are often called vague
(imprecise) concepts. We say that a concept is vague when there may be cases
(elements, objects) in which there is no clear fact of the matter whether the con-
cept applies or not. Hence, the classical approach to concept definability known
from classical logic cannot be applied for vague concepts. At the same time
an approximation of a vague concept consists in construction of an algorithm
(called a classifier) for this concept, which may be treated as a constructive, ap-
proximate description of the concept. This description enables to classify testing
objects, that is, to determine for a given object whether it belongs to the concept
approximated or not to which degree.

There is a long debate in philosophy on vague concepts (see, e.g., [138, 139,
245]) and recently computer scientists (see, e.g., [34, 168, 205, 265, 272, 274, 275])
as well as other researchers have become interested in vague concepts. Since
the classical approach to concept definability known from classical logic cannot
be applied for vague concepts new methods of definability have been proposed.
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Professor Lotfi Zadeh (see [347]) introduced a very successful approach to de-
finability of vague concepts. In this approach, sets are defined by partial mem-
bership in contrast to crisp membership used in the classical definition of a set.
Rough set theory proposed a method of concept definability by employing the
lower and upper approximation, and the boundary region of this concept (see
Section 2.1). If the boundary region of a set is empty it means that a particular
set is crisp, otherwise the set is rough (inexact). The non-empty boundary re-
gion of the set means that our knowledge about the set is not sufficient to define
the set precisely. Using the lower and upper approximation, and the boundary
region of a given concept a classifier can be constructed. Assume there is given
a decision table A = (U,A, d), whose binary decision attribute with values 1
and 0 partitions the set of objects in two disjoint ones: C and C ′. The set C
contains objects with the decision attribute value equal to 1, and the set C ′

contains objects with the decision attribute value equal to 0. The sets C and C ′

may also be interpreted in such a way that the set C is a certain concept to be
approximated and the set C ′ is the complement of this concept (C ′ = U \ C).
If we define for concept C and its complement C ′, their A-lower approximations
AC and AC ′, the A-upper approximation AC, and the A-boundary BNA(C)
(BNA(C) = AC \ AC), we obtain a simple classifier which operates in such a
way that a given testing object u is classified to concept C if it belongs to the
lower approximation AC. Otherwise, if object u belongs to the lower approx-
imation AC ′, it is classified to the complement of concept C. However, if the
object belongs neither to AC nor AC ′, but it belongs to BNA(C), then the clas-
sifier cannot make an unambiguous decision about membership of the object,
and it has to respond that the object under testing simultaneously belongs to
the concept C and its complement C ′, which means it is a border object. In
this case the membership degree of a tested object u ∈ U to concept C ⊆ U is
expressed numerically with the help of a rough membership function (see, e.g.,
[217, 221]). The rough membership function µC quantifies the degree of relative
overlap between the concept C and the equivalence class to which u belongs. It
is defined as follows:

µC(u) : U → [0, 1] and µC(u) =
card([u]INDA(A) ∩ C)

card([u]INDA(A))
.

As we can see, in order to work the classifier described above, it is neces-
sary for the tested object to belong to one of the equivalence classes of relation
INDA(A). However, there is one more instance remaining when the tested ob-
ject does not belong to any equivalence class of relation INDA(A). In such case,
the classifier under consideration cannot make any decision about membership
of the tested object and has to say: “I do not know”.

Unfortunately, the case when the tested object does not belong to any equiv-
alence class of relation INDA(A) frequently occurs in practical applications. It
is due to the fact that if the objects under testing do not belong to the decision
table that was known at the beginning, but to its extension, the chances are
small that in a given decision table, there exists an object (called a training
object) whose conditional attribute values are identical to those in the testing
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object. However, it follows from the definitions of the relation INDA(A) that
the testing object for which there is no training object cannot be classified by the
classifier described above. In such a case, one can say that the extension of this
classifier is very small. For the above reason, the classic approach to classifying
objects in the rough set theory (described above) requires generalization.

It is worth noticing that in machine learning and pattern recognition (see,
e.g., [93, 129, 142, 172, 175, 179, 247]), this issue is known under the term learning
concepts by examples (see, e.g., [172]). The main problem of learning concepts
by examples is that the description of a concept under examination needs to be
created on the basis of known examples of that concept. By creating a concept
description we understand detecting such properties of exemplary objects be-
longing to this concept that enable further examination of examples in terms of
their membership in the concept under examination. A natural way to solve the
problem of learning concepts by examples is inductive reasoning (see, e.g., [2,
125]). In inductive reasoning we assume as true the sentence stating a general
regularity, at the same time we do that on the basis of acknowledging sentences
stating individual instances of this regularity (see, e.g., [2, 125]). This is the rea-
soning according to which decisions in the real world are often made relying on
incomplete or even flawed information. This takes place in the cases of answers to
questions connected with forecasting, checking hypotheses or making decisions.

In the case of the problem of learning concepts by examples, the usage of
inductive reasoning means that while obtaining further examples of objects be-
longing to the concept (the so-called positive examples) and examples of objects
not belonging to the concept (the so-called negative examples), an attempt is
made to find such description that correctly matches all or almost all examples
of the concept under examination.

From the theoretical point of view, in the rough set theory the classic ap-
proach to concept approximation was generalized by Professor Skowron and Pro-
fessor Stepaniuk (see [268]). This approach is consistent with the philosophical
view (see, e.g., [138, 139]) and the logical view (see, e.g., [245]). The main ele-
ment of this generalization is an approximation space. The approximation space
(see, e.g., [34, 220, 268, 287]) is a tuple AS = (U, I, ν), where

– U is a non-empty set of objects,
– I : U → P (U) is an uncertainty function and P (U) denotes the powerset of

U ,
– ν : P (U)× P (U) → [0, 1] is a rough inclusion function.

The uncertainty function I defines for every object u ∈ U a set of objects
indistinguishable with u or similar to u. The set I(u) is called the neighborhood
of u. If U is a set of objects of a certain decision table A = (U,A, d), then in the
simplest case the set I(u) may be the equivalence class [u]INDA(A). However, in
a general case the set I(u) is usually defined with the help of a special language
such as GDL or NL (see Section 4.7).

The rough inclusion function ν defines the degree of inclusion of X in Y ,
where X, Y ⊆ U . In the simplest case, rough inclusion can be defined by:
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ν(X, Y ) =

{
card(X∩Y )

card(X) if X 6= ∅
1 if X = ∅.

This measure is widely used by the data mining and rough set communities
(see, e.g., [34, 217, 221, 268]). However, rough inclusion can have a much more
general form than inclusion of sets to a degree (see [237, 272, 275]).

It is worth noticing that in literature (see, e.g., [272]) a parameterized approx-
imation space is considered instead of the approximation space. Any parameter-
ized approximation space consists of a family of approximation spaces creating
the search space for data models. Any approximation space in this family is dis-
tinguished by some parameters. Searching strategies for optimal (sub-optimal)
parameters are basic rough set tools in searching for data models and knowl-
edge. There are two main types of parameters. The first ones are used to define
object sets (neighborhoods), the second are measuring the inclusion or closeness
of neighborhoods.

For an approximation space AS = (U, I, ν) and any subset X ⊆ U the lower
and the upper approximations are defined by:

– LOW (AS, X) = {u ∈ U : ν (I (u) , X) = 1} ,
– UPP (AS, X) = {u ∈ U : ν (I (u) , X) > 0}, respectively.

The lower approximation of a set X with respect to the approximation space
AS is the set of all objects which can be classified with certainty as object of
X with respect to AS. The upper approximation of a set X with respect to the
approximation space AS is the set of all objects which can be possibly classified
as objects of X with respect to AS.

Several known approaches to concept approximations can be covered using
the approximation spaces discussed here, e.g., the approach given in [217, 221],
approximations based on the variable precision rough set model (see, e.g., [356])
or tolerance (similarity) rough set approximations (see, e.g., [268]).

Similarly to the classic approach, the lower and upper approximation in the
approximation space AS for a given concept C may be used to classify objects to
this concept. In order to do this one may examine the membership of the tested
objects to LOW (AS,C), LOW (AS,C ′) and UPP (AS, C) \ LOW (AS, C).

However, in machine learning and pattern recognition (see, e.g., [93, 129, 142,
172, 175, 179, 247]), we often search for approximation of a concept C ⊆ U∗ in
an approximation space AS∗ = (U∗, I∗, ν∗) having only a partial information
about AS∗ and C, i.e., information restricted to a sample U ⊆ U∗. Let us
denote the restriction of AS∗ to U by AS = (U, I, ν), i.e., I(x) = I∗(x) ∩ U ,
ν(X, Y ) = ν∗(X, Y ) for x ∈ U , and X, Y ⊆ U (see Fig. 3).

To decide if a given object u ∈ U∗ belongs to the lower approximation
or to the upper approximation of C ⊆ U∗, it is necessary to know the value
ν∗(I∗(u), C). However, in the case there is only partial information about the
approximation space AS∗ available, one must make an estimation of such a value
ν∗(I∗(u), C) rather than its exact value. In machine learning, pattern recognition
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Fig. 3. An approximation space AS and its extension AS∗

or data mining, different heuristics are used for estimation of the values of ν∗.
Using different heuristic strategies, values of another function ν′ are computed
and they are used for estimation of values of ν∗. Then, the function ν′ is used for
deciding if objects belong to C or not. Hence, we define an approximation of C
in the approximation space AS′ = (U∗, I∗, ν′) rather than in AS∗ = (U∗, I∗, ν∗).
Usually, it is required that the approximations of C ∩U in AS and AS′ are close
(or the same).

The approach presented above (see, e.g., [34, 265, 274, 275]) became an inspi-
ration for finding out of a number of methods which would enable to enlarge the
extension of constructed classifiers, that is, to make the classifiers under con-
struction to be able to classify any objects, and not only those belonging to a
given decision table.

Some other issues concerning the rough set approach to vague concept ap-
proximation are discussed, e.g., in [245, 265, 274, 275]. Among these issues are
the higher order vagueness (i.e., nondefinability of boundary regions), adaptive
learning of concept approximation, concept drift, and sorites paradoxes.

One of the basic ways of increasing the extension of classifiers is to approx-
imate the concepts not with the help of the equivalence class of relation IND
(see above) but with the help of the patterns of the established language which
different objects may match, both from the training table and its extension. A
given object matches the pattern if it is compatible with the description of this
pattern. Usually, the pattern is constructed in such a way that all or almost
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all its matching objects belong to the concept under study (the decision class).
Moreover, it is required that the objects from many equivalence classes of re-
lation IND could match the patterns. Thus, the extension of classifiers based
on patterns is dramatically greater than the extension of classifiers working on
the basis of equivalence classes of relation IND. These types of patterns are
often called decision rules (see Section 2.3). In literature one may encounter
many methods of computing decision rules from data and methods enabling
preprocessing the data in order to construct effective classifiers. Into this type
of methods one may include, for example, discretization of attribute values (see
Section 2.2), methods computing decision rules (see Section 2.3), shortening and
generalization of decision rules (see Section 2.5).

The determined decision rules may be applied to classifiers construction. For
instance, let us examine the situation, when a classifier is created on the basis
of decision rules from the set RUL(A) computed for a given decision table A =
(U,A, d), and at the same time decision attribute d describes the membership
to a certain concept C and its complement C ′. 1

The set of rules RUL(A) is the sum of two subsets RUL(A, C) and
RUL(A, C ′), where RUL(A, C) is the set of rules classifying objects to C and
RUL(A, C ′) is a set of rules classifying objects to C ′. For any tested object u,
by MRul(A, C, u) ⊆ RUL(A, C) and MRul(A, C ′, u) ⊆ RUL(A, C ′) we denote
sets of such rules whose predecessors match object u and classify objects to C
and C ′, respectively.

Let AS = (U, I, ν) be an approximation space, where:

1. ∀u ∈ U : I(u) =
⋃

r∈MRul(A,C,u)

SuppA(r) ∪ ⋃
r∈MRul(A,C′,u)

SuppA(r)

2. ∀X,Y ⊆ U : ν(X, Y ) =

{
card(X∩Y )

card(X) if X 6= ∅
1 if X = ∅.

The above approximation space AS may be extended in a natural way to
approximation space AS′ = (U∗, I∗, ν′), where:

1. I∗ : U∗ −→ P (U∗) such that ∀u ∈ U : I∗(u) = I(u),

2. ∀X,Y ⊆ U∗ : ν′(X, Y ) =

{
card(X∩Y )

card(X) if X 6= ∅
1 if X = ∅.

Let us notice that such a simple generalization of functions I to I∗ and ν to
ν′ is possible because function I may determine the neighborhood for a given
object belonging to U∗. It results from the fact that decision rules from set
RUL(A) may recognize objects not only from set U but also from set U∗ \ U .
Approximation space AS′ may now also be used to construct a classifier which
classifies objects from set U∗ to concept C or its complement C ′. In creating

1 For simplicity of reasoning we consider only binary classifiers, i.e. classifiers with two
decision classes. One can easily extend the approach to the case of classifiers with
more decision classes.
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such a classifier the key problem is to resolve the conflict between the rules
classifying the tested object to the concept or to its complement. Let us notice
that this conflict occurs because in practice we do not know function ν∗ but
only its approximation ν′. That is why, there may exist such a tested object ut

that the values ν′({ut}, C) and ν′({ut}, C ′) are high (that is close to 1), while
values ν∗({ut}, C) and ν∗({ut}, C ′) are very different (e.g., ν∗({ut}, C) is close
to 1 and ν∗({ut}, C ′) is close to 0).

Below, we present the definition of such a classifier in the form of a function
that returns the value Y ES when the tested object belongs to C or the value
NO when the tested object belongs to C ′:

∀u ∈ U : Classifier(u) =
{

Y ES if ν′({u}, C) > 0.5
NO otherwise. (5)

Obviously, other rough inclusion functions may be defined (see, e.g., [237,
272, 275]). Thus, we obtain different classifiers. Unfortunately, a classifier de-
fined with the help of Equation (5) is impractical because the function ν′ used
in it does not introduce additional parameters which enable to recognize of ob-
jects to the concept and its complement whereas in practical applications in
constructing classifiers based on decision rules, functions are applied which give
the strength (weight) of the classification of a given tested object to concept C
or its complement C ′ (see, e.g., [11, 21, 115, 173, 315]). Below, we present a few
instances of such weights (see [21]).

1. A simple strength of decision rule set is defined by

SimpleStrength(C, ut) =
card(MRul(A, C, ut))

card(RUL(A, C))
.

2. A maximal strength of decision rule set is defined by

MaximalStrength(C, ut) = maxr∈MRul(A,C,ut)

{
SuppA(r)
card(C)

}
.

3. A basic strength or a standard strength of decision rule set is defined by

BasicStrength(C, ut) =

∑
r∈MRul(A,C,ut)

SuppA(r)

∑
r∈RUL(A,C)

SuppA(r)
.

4. A global strength of decision rule set is defined by

GlobalStrength(C, ut) =

card

(
⋃

r∈MRul(A,C,ut)

SuppA(r)

)

card(C)
.

47



Using each of the above rules weight, a rough inclusion function correspond-
ing to it may be defined. Let us mark any established weight of rule sets as S.
For weight S we define an exemplary rough inclusion function νS in the following
way:

∀X, Y ⊆ U : νS(X, Y ) =





0 if Y = ∅ ∧X 6= ∅
1 if X = ∅

S(Y,u)
S(Y,u)+S(U\Y,u) if X = {u} and

S(Y, u) + S(U \ Y, u) 6= 0

1
2 if X = {u} and

S(Y, u) + S(U \ Y, u) = 0

∑
u∈X

νS({u},Y )

card(X) if card(X) > 1

,

where for an established set Y and object u the weights S(Y, u) and S(U \ Y, u)
are computed using the decision rule set generated for table A = (U,A, dY ),
where attribute dY describes the membership of objects from U to the set Y .

The rough inclusion function defined above may be used to construct the
classifier as it is done in Equation (5). Such a classifier executes a simple ne-
gotiation method between the rules classifying the tested object to the concept
and rules classifying the tested object to the complement of the concept (see
Section 2.6). It simply is based on classifying tested object u to concept C only
when with the established weight of rule sets S the value νS({u}, C) is bigger
than νS({u}, C ′). Otherwise, object u is classified to the complement of concept
C.

In this paper, the weight BasicStrength is used in experiments related to
construction of classifiers based on decision rules to resolve conflicts between rule
sets.

2.9 Evaluation of Classifiers

In order to evaluate the classifier quality in relation to the data analyzed, a given
decision table is partitioned into the two tables in a general case (see, e.g., [175,
242, 335]):

1. the training table containing objects on the basis of which the algorithm
learns to classify objects to decision classes,

2. the test table, by means of which the classifier learned on the training table
may be evaluated when classifying all objects belonging to this table.

The numerical measure of the classifier evaluation is often the number of
mistakes made by the classifier during classification of objects from the test table
in comparison to all objects under classification (the error rate, see, e.g., [11,
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Predicted
Negative Positive

Actual Negative TN FP
Positive FN TP

Table 1. The confusion matrix

13, 175]). However, the method of the numerical classifier evaluation, used most
often, is the method based on a confusion matrix. The confusion matrix (see, e.g.,
[242, 251, 253]) contains information about actual and predicted classifications
done by a classifier. Performance of such systems is commonly evaluated using
the data in the matrix. The Table 1 shows the confusion matrix for a two class
classifier, i.e., for a classifier constructed for a concept.

The entries in the confusion matrix have the following meaning in the context
of our study (see, e.g., [3]):

– TN (True Negatives) is the number of correct predictions that an object is
a negative example of a concept of the test table,

– FP (False Positives) is the number of incorrect predictions that an object
is a positive example of a concept of the test table,

– FN (False Negatives) is the number of incorrect predictions that an object
is a negative example of a concept of the test table,

– TP (True Positives) is the number of correct predictions that an object is a
positive example of a concept of the test table.

Several standard terms (parameters) have been defined for the two class
confusion matrix:

– the accuracy (ACC) defined for a given classifier by the following equality:

ACC =
TN + TP

TN + FN + FP + TP
,

– the accuracy for positive examples or the sensitivity (see, e.g., [3]) or the
true positive rate (TPR) (see, e.g., [242]) defined for a given classifier by the
following equality:

TPR =
TP

TP + FN
,

– the accuracy for negative examples or the specificity (see, e.g., [3]) or the
true negative rate (TNR) (see, e.g., [242]) defined for a given classifier by
the following equality:

TNR =
TN

TN + FP
.
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An essential parameter is also the number of classified objects from the test
table in comparison to the number of all objects from this table since classifiers
may not always be able to classify the objects. This parameter, called the cover-
age (see, e.g., [175, 253]), may be treated as an extension measure of the classifier.
Thus, in order to evaluate classifiers, also the following numerical parameters are
applied in this paper:

1. the coverage (COV ) defined for a given classifier by the following equality:

COV =
TN + FP + FN + TP

the number of all objects of the test table
,

2. the coverage for positive examples (PCOV ) defined for a given classifier by
the following equality:

PCOV =
FN + TP

the number of all positive examples of a concept of the table
,

3. the coverage for negative examples (NCOV ) defined for a given classifier by
the following equality:

NCOV =
TN + FP

the number of all negative examples of a concept of the table
,

4. the real accuracy defined for a given classifier by: ACC · COV ,
5. the real accuracy for positive examples or the real true positive rate defined

for a given classifier by: TPR · PCOV ,
6. the real accuracy for negative examples or the real true negative rate defined

for a given classifier by: TNR ·NCOV .

Besides that, in order to evaluate classifiers still different parameters are
applied. These are, for instance, time of construction of a classifier on the basis
of a training table or the complexity degree of the classifier under construction
(e.g., the number of generated decision rules).

In summary, in this paper the main parameters applied to the evaluation
of classifiers are: the accuracy, the coverage, the real accuracy, the accuracy
for positive examples, the coverage for positive examples, the real accuracy for
positive examples, the accuracy for negative examples, the coverage for negative
examples and the real accuracy for negative examples.

They are used in experiments with AR schemes (see Section 5.8) and ex-
periments related to detecting behavioral patterns (see Section 6.25 and Sec-
tion 6.26). However, in experiments with automated planning another method
of classifier quality evaluation was applied (see Section 7.21). It results from the
fact that this case is about automated generating the value of complex decision
that is a plan which is a sequence of actions alternated with states. Hence, to
compare this type of complex decision values the above mentioned parameters
may not be used. Therefore, to compare the plans generated automatically with
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the plans available in the data set we use a special classifier based on concept
ontology which shows the similarity between any pair of plans (see Section 7.18).

It is worth noticing that in literature there may be found another, frequently
applied method of measuring the quality of created classifiers. It is a method
based on ROC curve (Receiver Operating Characteristic curve) (see, e.g., [3, 89,
302]). This method is available, for instance, in system ROSETTA (see, e.g.,
[196, 197, 251]). It is also worthwhile mentioning that the author of this paper
participated in construction of programming library RSES-lib, creating the com-
putational kernel of system ROSETTA (see [251, 306] for more details).

In order not to make the value of the determined parameter of the classifier
evaluation depending on a specific partitioning the whole decision table into a
training and test parts, a number of methods are applied which perform tests to
determine which parameter values of the classifier evaluation are creditable.

The methods of this type applied most often are train-and-test and cross-
validation (see, e.g., [83, 175, 335]). The train-and-test method is usually applied
to decision tables having at least 1000 objects (see, e.g., [175]). It consists in a
random isolation of two test subtables from the whole data available, treating
one of them as a training subtable and the other as a test subtable. The training
and test subtables are usually separated (although not always) and altogether
make the available decision table. It is crucial, however, that at least some part
of the objects from the test subtable does not occur in the training subtable.
The proportion between the number of objects in the test and training subtables
depends on a given experiment but it is usually such that the number of objects
in the test part constitutes from 20 to 50 percent of the number of objects in the
whole data available (see, e.g., [175]). The cross-validation method is applied to
evaluate a classifier when the number of objects in the decision table is less than
1000 (see, e.g., [175]). This method consists in partitioning data in a random
way into m equal parts and, then performing m experiments with them. In each
of these experiments, a local coefficient of the classifier evaluation is calculated
for a situation when one of the parts into which the data was divided is a set of
tested objects, and the remaining m−1 parts (temporarily combined) are treated
as a set of training objects. Finally, a coefficient of the classifier evaluation as an
average arithmetical coefficient of all experiments is calculated. The number m
is determined depending on the specific data and should be selected in such a
way that the test parts not to have too few objects. In practice, m is an integer
ranging from 5 to 15 (see, e.g., [175]).

All decision tables used in experiments have more than 1000 objects, in this
paper. That is why in order to determine the parameter of the classifier quality
the train-and-test method is always applied. Moreover, each experiment is re-
peated 10 times for ten random partitions into two separate tables (training and
test). Hence, the result of each experiment is the arithmetical mean obtained
from the results of its repetitions. Additionally, the standard deviation of the
received result is given.
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2.10 Problem of Low Coverage

If a given tested object matches the predecessor of a certain basic decision rule
(that is the values of condition attributes of this object are the same as the
values of the descriptors from the rule predecessor corresponding to them), then
this rule may be used to classify this object, that is, the object is classified to
the decision class occurring in the rule successor. In this case we also say that a
given tested object is recognized by a certain decision rule. However, if a given
tested object is recognized by different decision rules which classify it to more
than one decision classes, then negotiation methods between rules are applied
(see Section 2.6 and Section 2.8).

In practice, it may happen that a given tested object does not match the
predecessor of any of the available decision rules. We say that this object is not
recognized by a given classifier based on decision rules and what follows it cannot
be classified by this classifier. It is an unfavorable situation, for we often expect
from the classifiers to classify all or almost all tested objects. If there are many
of the unclassified objects, then we say that a given classifier has too low an
extension. It is expressed numerically by a low value of the coverage parameter
(see Section 2.9).

A number of approaches which enable to avoid a low coverage of classifiers
based on decision rules were described in literature. They are for example:

1. The application of classifiers based on the set of all rules with a minimum
number of descriptors (see Section 2.4) which usually have a high extension
(see, e.g., [11, 13]).

2. The application of rule classifiers constructed on the basis of covering algo-
rithms and partial matching mechanism of the objects to the rules (see, e.g.,
[49, 64, 115, 172, 173, 283–285]).

3. The application of classifiers based on decision rules which underwent the
process of generalization of rules owing to which the classifier extension usu-
ally increases (see Section 2.5).

4. The application of classifiers based on a lazy learning which does not require
preliminary computation of decision rules, for decision rules needed for object
classification are discovered directly in a given decision table during the
classification of the tested object (see, e.g., [12, 13, 68]).

All the methods mentioned above have their advantages and disadvantages.
The first method has an exponential time complexity which results from the
complexity of the algorithm computing all reducts (see Section 2.4). The second
method is very quick, for it is based on rules computed with the help of the
covering method. However, in this method there are often applied approximation
rules to classify objects (determined as a result of a partial matching objects to
the rules). Therefore, the quality of classification on the basis of such rules may
be unsatisfactory. The third method uses the operation of rule generalization.
Owing to this operation the extension of the obtained rules increases. However,
it does not lead to such a high extension as in the case of the first, second and
fourth method. Apart from that the operation of rule generalization is quite time
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consuming. Whereas, the fourth method, although does not require preliminary
computation of decision rules, its pessimistic computational time complexity of
each tested object classification is of order O(n2 ·m), where n is the number of
objects in the training table and m is the number of condition attributes. Hence,
for bigger decision tables this method cannot be applied effectively.

There is one more possibility remaining to build classifiers on the basis of
rules computed with the covering method without using partial matching tested
objects to the rules. Obviously, classifiers based on such rules may have a low
coverage. However, they usually have a high quality of the classification. It is
extremely crucial in many applications (for example in medical and financial
ones) where it is required that the decisions generated by classifiers be always
or almost always correct. In such applications it is sometimes better for the
classifier to say I do not know rather than make a wrong decision. That is why
in this paper we use classifiers based on rules computed with covering method
(without partial matching objects to the rules) agreeing on a low coverage of such
classifiers in cases when classifiers based on the set of all rules with minimum
number of descriptors cannot be applied (too large analyzed decision tables).

3 Methods of Constructing Stratifying Classifiers

The algorithm of concept approximation, presented in Subsection 2.8, consists
in classifying the tested objects to the lower approximation of this concept, the
lower approximation of complement of this concept or its border. Many methods
enabling increase of the extension of classifiers under construction, in rough set
theory are proposed (see Section 2.8). Discretization of attribute values (see Sec-
tion 2.2), methods of calculating and modifying decision rules (see Sections 2.3,
2.4, 2.5), and partial matching method (see Section 2.10) are examples of such
methods. As a result of applying these methods, there are constructed classifiers
able to classify almost every tested object to the concept or its complement.

At first glance this state of affairs should dispose optimistically for approxi-
mation methods can be expanded for tested objects from beyond a given decision
table, which is necessary in inductive learning (see Section 2.8). Unfortunately,
such a process of generalizing concept approximation encounters difficulties in
classifying new (unknown during the classifier learning) tested objects. Namely,
after expanding the set of objects U of a given information system with new ob-
jects, equivalence classes of these objects are often disjoint with U . This means
that if such objects match the description of a given concept C constructed on
the basis of set U , this match is often incidental. Indeed due to the unfamiliarity
the process generalization of decision rules may go too far (e.g., decision rules are
too short) because of absence of these new objects when the concept description
was created. It may happen that the properties (attributes) used to describe a
concept are chosen in wrong way. So, if a certain tested object from outside the
decision table is classified, then it may turn out that, in the light of the knowl-
edge gathered in a given decision table, this object should be classified neither
to the concept nor to its complement but to the concept border, which expresses
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our uncertainty about the classification of this object. Meanwhile, most of the
classifiers currently constructed classify the object to the concept or its comple-
ment. A need of use the knowledge from a given table arises in order to determine
the coefficient of certainty that the object under testing belongs to the approx-
imated concept. In other words, we would like to determine, with reference to
the tested object, how certain the fact is that this object belongs to the concept.
And at the same time it would be the best to express if the certainty coefficient
by a number, e.g., from [0, 1]. In literature such a numerical coefficient is ex-
pressed using different kinds of rough membership functions (see Section 2.8). If
a method of determining such a coefficient is given, it may be assumed that the
coefficient values are discretized which leads to a sequence of concept layers ar-
ranged linearly. The first layer in this sequence represents objects which, without
any doubt do not belong to the concept (the lower approximation of the concept
complement). The next layers in the sequence represent objects belonging to the
concept more and more certainly (border layers of the concept). The last layer
in this sequence represents objects certainly belonging to the concept, that is,
the ones belonging to the lower concept approximation (see Fig. 4).

 

lower approximation of C 

layers of the boundary  
region of C 

lower approximation  
of U-C 

Fig. 4. Layers of a given concept C

Let us add that this type of concept layers may be defined both on the basis
of the knowledge gathered in data tables and using additional domain knowledge
provided by experts.

3.1 Stratifying Classifier

In order to examine the membership of tested objects to individual concept
layers, such classifiers are needed that can approximate all layers of a given
concept at the same time. Such classifiers are called in this paper stratifying
classifiers.

Definition 1. (A stratifying classifier)
Let A = (U,A, d) be a decision table whose objects are positive and negative
examples of a concept C (described by a binary attribute d).
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1. A partition of the set U is a family {U1, ..., Uk} of non-empty subsets of the
set U (where k > 1) such that the following two conditions are satisfied:
(a) U = U1 ∪ ... ∪ Uk,
(b) ∀i 6=j Ui ∩ Uj = ∅.

2. A partition of the set U into a family U1
C , ..., Uk

C we call the partition of U
into layers in relation to concept C when the following three conditions are
satisfied:
(a) set U1

C includes objects which, according to an expert, certainly do not
belong to concept C (so they belong to a lower approximation of its com-
plement),

(b) for every two sets U i
C , U j

C (where i < j), set U i
C includes objects which,

according to an expert, belong to concept C with a degree of certainty
lower than the degree of certainly of membership of objects of U j

C in U ,
(c) set Uk

C includes objects which, according to an expert, certainly belong to
concept C, viz., to its lower approximation.

3. Each algorithm which assigns (classifies) tested objects into one of the layers
belonging to a partition of the set U in relation to the concept C, is called a
stratifying classifier of the concept C.

4. In practice, instead of using layer markings U1
C , ..., Uk

C , elements of the set
E = {e1, ..., ek} are used to label layers, whereas the stratifying classifier
constructed for the concept C which classifies each tested object into one of
the layers labeled with labels from the set E, is denoted by µE

C .
5. If the stratifying classifier µE

C classifies a tested object u into the layer labeled
by e ∈ E, then this fact is denoted by the equality µE

C(u) = e.

An expert may divide the set of objects U into layers in two following ways:

1. by an assignment of weight labels to all training objects arbitrary (see Sec-
tion 3.2),

2. by providing heuristics which may be applied in construction of a stratifying
classifier (see Section 3.3).

Stratifying classifiers can be very useful when we need to estimate realistically
what the certainty of membership of a tested object to a concept is, without
determining whether the object belongs to the concept or not. Apart from that,
stratifying classifiers may be used to construct the so-called production rules
(see Section 5.3).

In the paper, two general ways of construction of stratifying classifiers are
presented. The first one is the expert approach consisting in defining by an expert
an additional attribute in data which describes the membership of objects to
particular layers of the concept. Next, a classifier differentiating layers as decision
classes is built (see Section 3.2).

The second approach is called the automatic approach and is based on design-
ing algorithms which are extensions of classifiers enabling the classification of
objects into layers of a concept on the basis of certain premises and experimental
observations (see Section 3.3).
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3.2 Stratifying Classifiers Based on the Expert Approach

In construction of stratifying classifiers using expert knowledge, it is assumed
that for all training objects not only the binary classification of training objects
to a concept or outside the concept is known but we also know the assignment
of all training objects into the specific concept layers. Using this approach an
additional knowledge needs to be gained from a domain knowledge. Owing to
that a classical classifier may be built (e.g., the one based on a set of rules with a
minimal number of descriptors) which directly classifies the objects to different
concept layers. This classifier is built on the basis of a decision attribute which
has as many values as many concept layers are there, and each of these values
is a label of one of the layers.

3.3 Stratifying Classifiers Based on the Automatic Approach

In construction of stratifying classifiers using the automatic approach, the as-
signment of all training objects to specific concept layers is unknown but we
only know the binary classification of training objects to a concept or its com-
plement. However, the performance of a stratifying classifier is, in this case,
connected with a certain heuristics which supports discernibility of objects be-
longing to a lesser or greater degree to the concept, that is, objects belonging to
different layers of this concept. Such a heuristic determines the way an object is
classified to different layers and, thus, it is called a stratifying heuristic.

Many different types of heuristics stratifying concepts may be proposed.
These may be, e.g., heuristics based on the difference of weights of decision
rules classifying tested objects to concept and its complement or heuristics us-
ing a k-NN algorithm of k nearest neighbors (compare with [22, 23, 33]). In this
paper, however, we are concerned with a new type of stratifying heuristics using
the operation of decision rule shortening (see Section 2.5).

The starting point of the presented heuristics is the following observation.
Let us assume that for a certain consistent decision table A whose decision is
a binary attribute with values 1 (objects belonging to the concept C) and 2
(objects belonging to the complement of concept C which is denoted by C ′), a
set of decision rules, RUL(A) was calculated. The set RUL(A) is the sum of
two separate subsets of rules RUL1(A) (classifying objects to C) and RUL2(A)
(classifying objects to C ′). Now, let us shorten the decision rules from RUL1(A)
to obtain the coefficient of consistency equal to 0.9 by placing the shortened
decision rules in the set RUL1(A, 0.9). Next, let RUL′(A) = RUL1(A, 0.9) ∪
RUL2(A). In this way, we have increased the extension of the input decision set
of rules RUL(A) in relation to the concept C, viz., as a result of shortening of
the rules, the chance is increased that a given tested object is recognized by the
rules classifying to the concept C. In other words, the classifier based on the set
of rules RUL′(A) classifies objects to the concept C more often.

Now, if a certain tested object u, not belonging to table A, is classified to
C ′ by the classifier based on the rule set RUL′(A), then the chance that object
u actually belongs to C ′ is much bigger than in the case of using the set of
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rules RUL(A). The reason for this assumption is the fact that it is harder for a
classifier based on the set of rules RUL′(A) to classify objects to C ′ for the rules
classifying objects to C are shortened in it and owing to that they recognize the
objects more often. If, however, an object u is classified to C ′, then some of its
crucial properties identified by the rules classifying it to C ′ must determine this
decision. If shortening of the decision rules is greater (to the lower consistency
coefficient), then the change in the rule set extension will be even bigger.

Summing up the above discussion, we conclude that rule shortening makes
it possible to change the extensions of decision rule sets in relation to chosen
concepts (decision classes), and owing to that one can obtain a certain type
of approximation based on the certainty degree, concerning the membership of
tested objects to the concept under consideration where different layers of the
concept are modeled by applying different coefficients of rule shortening.

In construction of algorithms producing stratifying classifiers based on short-
ening of decision rules, there occurs a problem with the selection of accuracy
coefficient threshold to which decision rules are shortened. In other words, what
we mean here is the range and the step with which the accuracy coefficient
threshold must be selected in order to obtain sets of rules enabling an effective
description of the actual layers of the concept approximated. On the basis of
previous experimental experience (see, e.g., [11, 13]), in this paper, we establish
that the shortening thresholds of decision rule consistency coefficient are selected
from the range 0.5 to 1.0. The lower threshold limit (that is, 0.5) results from
the experimental observation that if we shorten rules classifying objects to a
certain concept C below the limit 0.5 (without simultaneous shortening of rules
classifying objects to C ′), then although their extension increases dramatically
(they classify objects to the concept C very often), their certainty falls to an
absolutely unsatisfactory level. However, the upper limit of the threshold (that
is 1.0) simply means leaving only accurate rules in the set of rules, and rejecting
other approximation rules which could have occurred for a given decision table.

If it comes, however, to the change step of the chosen threshold of the rule
coefficient of consistency, we set it at 0.1. This change step is dictated by the
fact that it enables a general search of thresholds from 0.5 to 1.0 and, at the
same time, the number of rule shortening operations is not too high which is
essential for keeping the time needed to conduct computer experiments within
acceptable bounds.

Now we present an algorithm of a stratifying classifier construction based on
rule shortening (see Algorithm 3.1).

Let us notice that after the above algorithm completes its performance on the
list L, there are eleven decision rule sets. The first classifier on this list contains
the most shortened rules classifying to C. That is why, if it classifies an object
to C ′, the degree of certainty is the highest that this object belongs to concept
C ′, whereas the last classifier on the list L, contains the most shortened rules
classifying to C ′. That is why the classification of an object to the concept C
using this classifier gives us the highest degree of certainty of that the object
really belongs to C.
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Algorithm 3.1: Stratifying classifier construction
Input: decision table A = (U,A, d) and concept C ⊆ U
Output: classifier list L representing a stratifying classifier
begin1

Calculate decision rules for table A, denoted by RUL(A) = RUL1(A)2

∪ RUL2(A)
Create empty classifier list L3

for a := 0.5 to 0.9 with step 0.1 do4

Shorten rules RUL1(A) to the consistency coefficient a and place5

the shortened decision rules in RUL1(A, a)
RUL := RUL1(A, a) ∪RUL2(A)6

Add RUL to the end of the list L7

end8

Add RUL(A) to the end of the list L9

for a := 0.9 to 0.5 with step 0.1 do10

Shorten rules RUL2(A) to the consistency coefficient a and place11

the shortened decision rules the RUL2(A, a)
RUL := RUL1(A) ∪RUL2(A, a)12

Add RUL to the end of the list L13

end14

return L15

end16
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The time complexity of Algorithm 3.1 depends on the time complexity of the
chosen algorithm of decision rules computing and on the algorithm of approxi-
mate rules synthesis (see Section 2.5).

On the basis of the classifier constructed according to Algorithm 3.1, the
tested object is classified to a specific layer with the help of successive classifiers
starting from the last to the first one, and if the object is classified by the i-th
classifier to C, then we learn about membership of the object under testing to the
(i+1)-th layer of C. However, if the object is not classified to C by any classifier,
we learn about membership of the tested object to the first layer (layer number
1), that is, to the complement of concept C. We present a detailed algorithm for
classification of the object using the stratifying classifier (see Algorithm 3.2).

Algorithm 3.2: Classification using the stratifying classifier
Input:
1. classifier list L representing a stratifying classifier,
2. set of labels of layers E = {e1, ..., esize(L)+1},
3. tested object u

Output: The label of the layer to which the object u is classified
begin1

for i := size(L) down to 1 do2

Classify u using the classifier L[i]3

if u is classified by L[i] to the concept C then4

return ei+15

end6

end7

return e18

end9

Let us notice that if the size of the list L is equal to 11 (generated by Algo-
rithm 3.1), the above classifier classifies objects to 12 concept layers where the
number 12 layer is the layer of objects with the highest degree of certainty of
membership to the concept and the layer number 1 is the layer with the lowest
degree of certainty of membership to this concept.

4 General Methodology of Complex Concept
Approximation

Many real-life problems may be modeled with the help of the so-called complex
dynamical systems (see, e.g., [8, 69, 97, 165, 294, 317]) or, putting it in an other
way, autonomous multiagent systems (see, e.g., [123, 164]) or swarm systems (see,
e.g., [226]). These are sets consisting of complex objects which are characterized
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by the constant change of parameters of their components over time, numer-
ous relationships among the objects, the possibility of cooperation/competition
among the objects and the ability of objects to perform more or less compli-
cated actions. Examples of systems of these kind are: traffic, a patient observed
during treatment, a team of robots during performing some task. The description
of the dynamics of such a system is often impossible using purely classical an-
alytical methods, and the description itself contains many vague concepts. For
instance, in order to monitor complex dynamical systems effectively, complex
spatio-temporal concepts are used very often, concerning dynamic properties of
complex objects occurring in these systems. These concepts are expressed in
natural language on a much higher level of abstraction than the so-called sensor
data, which have mostly been applied to approximation of concepts so far. Ex-
amples of such concepts are safe car driving, safe overtaking, patient’s behavior
when faced with a life threat, ineffective behavior of robot team.

Much attention has been devoted to spatio-temporal exploration methods
in literature (see, e.g., [248, 249]). The current experience indicates more and
more that approximation of such concepts requires a support of knowledge of the
domain to which the approximated terms are applied, i.e., the domain knowledge.
It usually means the knowledge about concepts occurring in a given domain and
various relations among these concepts. This knowledge exceeds significantly the
knowledge gathered in data sets; it is often represented in a natural language,
and it is usually obtained in a dialogue with an expert from a given domain
(see, e.g., [56, 231, 266, 290, 321, 352–354]). One of the methods of representing
this knowledge is recording it in the form of the so-called concept ontology. The
concept ontology is usually understood as a finite set of concepts creating a
hierarchy and relationships among these concepts which connect concepts from
different hierarchical levels (see next section). In this subsection, we present
a general methodology of approximating complex spatio-temporal concepts on
the basis of experimental data and a domain knowledge represented mainly by
a concept ontology.

4.1 Ontology as a Representation of Domain Knowledge

The word ontology was originally used by philosophers to describe a branch of
metaphysics concerned with the nature and relations of being (see, e.g., [333]).
However, the definition of ontology itself has been a matter of dispute for a
long time, and controversies concern mainly the thematic scope to be embraced
by this branch. Discussions on the subject of ontology definition appear in the
works of Gottfried Leibniz, Immanuel Kant, Bernard Bolzano, Franz Brentano,
or Kazimierz Twardowski (see, e.g., [158]). Most of them treat ontology as a
field of science concerning types and structures of objects, properties, events,
processes, relations, and reality domains (see, e.g., [279]). Therefore, ontology
is neither a science concerning functioning of the world nor the ways a human
being perceives it. It poses questions: How do we classify everything?, What
classes of beings are inevitable for describing and concluding on the subject of
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ongoing processes?, What classes of being enable to conclude about the truth?,
What classes of being enable to conclude about the future? (see, e.g., [279, 333]).

Ontology in Informatics. The term ontology appeared in the information
technology context at the end of the sixties of the last century as a specific way
of knowledge formalization, mainly in the context of database development and
artificial intelligence (see, e.g., [117, 116]). The growth in popularity of database
systems caused avalanche increase of their capacity. The data size, multitude of
tools used both for storing and introducing, or transferring data caused that
databases became difficult in managing and communication with the outside
world. Database schemes are determined to high extent not only by the require-
ments on an application or database theory but also by cultural conditions,
knowledge, and the vocabulary used by designers. As the result, the same class
of objects may possess different sets of attributes in various schemes termed dif-
ferently. These attribute sets are identical terms but often describe completely
different things. A solution to this problem are supposed to be ontologies which
can be treated as tools for establishing standards of database scheme creation.

The second pillar of ontology development is artificial intelligence (AI), mainly
because of the view according to which making conclusions requires knowledge
resources concerning the outside world, and ontology is a way of formalizing and
representing such knowledge (see, e.g., [94, 260]).

It is worth noticing that, in the recent years, one of the main applications
of ontologies has been their use for an intelligent search of information on the
Internet (see, e.g., [116] and [130] for more details).

Definition of Ontology. Philosophically as well as in information technology,
there is a lack of agreement if it comes to the definition of ontology. Let us now
consider three definitions of ontology, well-known from literature. Guarino states
(see [116]) that in the most prevalent use of this term, an ontology refers to an
engineering artifact, constituted by a specific vocabulary used to describe a certain
reality (or some part of reality), plus a set of explicit assumptions regarding the
intended meaning of vocabulary words. In this approach, an ontology describes
a hierarchy of concepts related by relationships, whereas in more sophisticated
cases, suitable axioms are added to express other relationships among concepts
and to constrain the interpretation of those concepts.

Another well-known definition of ontology has been proposed by Gruber
(see [113]). He defines an ontology as an explicit specification of a conceptu-
alization. He explains that for AI systems, what exists is that which can be
represented. When the knowledge of a domain is represented in a declarative
formalism, the set of objects that can be represented is called the universe of
discourse. This set of objects and the describable relationships among them are
reflected in the representational vocabulary with which a knowledge-based pro-
gram represents knowledge. Thus, according to Gruber, in the the context of AI,
we can describe the ontology of a knowledge-based program by defining a set of
representational terms. In such an ontology, definitions associate the names of
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entities in the universe of discourse (e.g., classes, relations, functions, or other
objects) with human-readable text describing what the names mean, and formal
axioms that constrain the interpretation and the well-formed use of these terms.

Finally, we present a view of ontology recommended by the World Wide
Web Consortium (W3C) (see [330]). W3C explains that an ontology defines the
terms used to describe and represent an area of knowledge. Ontologies are used
by people, databases, and applications that need to share domain information
(a domain is just a specific subject area or area of knowledge such as medicine,
tool manufacturing, real estate, automobile repair, financial management, etc.).
Ontologies include computer-usable definitions of basic concepts in the domain
and the relationships among them. They encode knowledge in a domain and also
knowledge that spans domains. In this way, they make that knowledge reusable.

Structure of Ontology. Concept ontologies share many structured similari-
ties, regardless of the language in which they are expressed. However, most on-
tologies describe individuals (objects, instances), concepts (classes), attributes
(properties), and relations (see, e.g., [113, 116, 130, 330]).

Individuals (objects, instances) are the basic, “ground level” components of
an ontology. They may include concrete objects such as people, animals, tables,
automobiles, and planets, as well as abstract individuals such as numbers and
words.

Person

Participant

Organizer

Program 
committee

Organizing
committee

Paper

Reviewer

Author

 

Fig. 5. The graph of a simple ontology
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Concepts (classes) are abstract groups, sets, or collections of objects. They
may contain individuals or other concepts. Some examples of concepts are vehicle
(the class of all vehicles), patient (the class of all patients), influenza (the class
of all patients suffering from influenza), player (the class of players), team (the
class of all players from some team).

Objects belonging to concepts in an ontology can be described by assigning
attributes to them. Each attribute has at least a name and a value, and is used
to store information that is specific to the object the attribute is attached to.
For example, an object from the concept participant (see ontology from Fig. 52)
has attributes such as first name, last name, address, affiliation. If you did not
define attributes for concepts, you would have either a taxonomy (if concept
relationships are described) or a controlled vocabulary. These are useful, but are
not considered true otologies.

There are three following types of relations between concepts from ontology:
a subsumption relation (written as is-a relation), a meronymy relation (written
as part-of relation), and a domain-specific relation.

The first type of relations is the subsumption relation (written as is-a). If a
class A subsumes a class B, then any member of the class A is-a member of the
class B. For example, the class author subsumes the class participant. It means
that anything that is a member of the class author is a member of the class
Participant (see ontology from Fig. 5). Where A subsumes B, A is called the
superclass, whereas B is the subclass. The subsumption relation is very similar
to the notion of inheritance, well-known from the object-oriented programming
(see, e.g., [53, 313]). Such relation can be used to create a hierarchy of concepts,
typically with a maximally general concept like person at the top, and more
specific concepts like author or reviewer at the bottom. The hierarchy of concepts
is usually visualized by a graph of ontology (see Fig. 5) where any subsumption
relation is represented by a thin solid line with an arrow in the direction from
the superclass to the subclass.

Another common type of relations is the meronymy relation (written as part-
of) that represents how objects combine together to form composite objects. For
example, in the ontology from Fig. 5, we would say that any reviewer is-part-of
the program committee. Any meronymy relation is represented graphically by a
broken line with an arrow in the direction from the part to the composite object
(see Fig. 5). From the technical point of view this type of relation between
ontology terms is represented with the help of object attributes belonging to
concepts. It is done in such a way that the value of an attribute of an object u,
which is to be a part of some object u′ belonging to different concept, informs
about u′.

Apart from the standard is-a and part-of relations, ontologies often include
additional types of relations that further refine the semantics modeled by the
ontologies. These relations are often domain-specific and are used to answer
particular types of questions. For example, in the domain of conferences, we
might define a written-by relation between concepts paper and author which tells

2 This example has been inspired by Jarrar (see [130]).
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us who is the author of a paper. In the domain of conferences, we define also
a writes relation between concepts author and paper which tells us which paper
has been written by each author. Any domain-specific relation is represented by
a thick solid line with an arrow. From the technical point of view this type of
relations between ontology concepts is also represented with the help of object
attributes belonging to the concepts.

In this paper, we use many ontologies, constructed on the basis of domain
knowledge concerning the analyzed data sets, to approximate complex concepts.
In these ontologies there occur all types of relations mentioned above. However,
the relations of individual types do not occur in these ontologies simultaneously
but in each of them there occurs only one type of relation. The reason for this is
the fact that individual relation types serve us to approximate different types of
complex concepts. For example, relations of the type is-a occur in ontology from
Fig. 6 which is an example of an ontology used to approximate spatial concepts
(see Section 5). Ontologies showing dependencies between temporal concepts for
structured objects and temporal concepts for constituent parts of these objects
(used to approximate temporal concepts for structured objects) are examples of
ontologies in which there occur relations of type part-of (see Section 6). On the
other hand, domain-specific relations occur in numerous examples of behavior
graphs presented in Section 6 and are used to approximate behavioral patterns.
The planning graphs presented in Section 7 are also examples of ontologies in
which there occur domain-specific relations. Incidentally, planning graphs are,
in a way, ontologies even more complex than the mentioned above, because two
types of concepts occur in them simultaneously. Namely, there occur concepts
representing states of complex objects and concepts representing actions per-
formed on complex objects.

Obviously, there are many ways of linking the ontologies mentioned above
provided they concern the same domain. For example, an ontology describing the
behavior graph of a group of vehicles may be linked with ontologies describing
dependencies of temporal concepts for such groups of vehicles and temporal
concepts describing behavior of individual vehicles or changes of relationships
among these vehicles. Then, in such an ontology, there would occur relations of
two types simultaneously, that is, domain-specific and part-of relations. Although
these types of linking different ontologies are not essential for complex concept
approximation methods presented in this paper, they cause a significant increase
of complexity of the ontologies examined.

General Recommendations Concerning Building of an Ontology. Cur-
rently there are many papers which describe various designer groups’ experience
obtained in the process of ontology construction (see, e.g., [132]). Although they
do not constitute formal frames enabling to create an integral methodology yet,
general recommendations how to create an ontology may be formed on their ba-
sis. Each project connected with an ontology creation has the following phases:

– Motivation for creating an ontology.
– Definition of the ontology range.
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– Ontology building.
• Building of a lexicon.
• Identification of concepts.
• Building of the concept structure.
• Modeling relations in ontology.

– The evaluation of the ontology obtained.
– Ontology implementation.

Motivation for creating an ontology is an initial process resulting from arising
inside a certain organization, a need to change the existing ontology or to create a
new one. Extremely crucial for the whole further process is, at this stage, clarity
of the aim for which the ontology is built. It is the moment when potential sources
of knowledge needed for the ontology construction should be defined. They are
usually sources which may be divided into two groups those requiring human
engagement (e.g., interviews, discussions) and those in which a human does not
appear as a knowledge source (e.g., documents, dictionaries and publications
from the modeled domain, intranet and Internet, and other ontologies).

By the ontology range we understand this part of the real world which should
be included into the model under creation in the form of concepts and rela-
tions among them. One of the easier, and at the same time very effective, ways
to determine the ontology range accurately is using the so-called “competency
questions” (see, e.g., [319]). The starting point for this method is defining a
list of questions to which the database built on the basis of the ontology under
construction should give an answer.

Having the range defined, the process of ontology building should be started.
The first step in ontology building is defining a list of expressions, phrases, and
terms crucial for a given domain and a specific context of application. A lexicon
should be composed that is a dictionary containing terms used by the ontology
as well as their definitions, from the list.

The lexicon is a starting point for the most difficult stage in the ontology
building, that is, construction of concepts (classes) of the ontology and relations
among these concepts. It should be remembered that it is not possible to perform
these two activities one after the other. They have to be performed in parallel.
We should bear in mind that each relation is also a concept. Thus, finding
the answer to the question What should constitute a concept and what should
constitute a relation? is not easy and depends on the target application and,
often, the designer’s experience.

If it comes to building hierarchical classes, three approaches to building such
a hierarchy are given in the paper [318]:

1. Top-down. We start with a concept superior to all concepts included in the
knowledge base and we come to the next levels of inferior concepts by ap-
plying atomization.

2. Bottom-up. We start with the most inferior concept contained in the knowl-
edge base and we come to the concepts on higher levels of hierarchy by
applying generalization.
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3. Middle-out. We start with concepts which are the most crucial in terms of
the project and we perform atomization or generalization when needed.

In order to evaluate the obtained ontology it should be checked if the ontology
possesses the following qualities ([319]):

– Consistency. The ontology is consistently integral, that is, contradictory con-
clusions cannot be drawn from it.

– Completeness. The ontology is complete if all expected elements are included
in the model (concepts, relations, etc.).

– Conciseness. All information gathered in the ontology is concise and accu-
rate.

– The possibility of answering the “competency questions” posed previously.

Summing up, an ontology building is a laborious process requiring a huge
amount of knowledge concerning the modeling process itself, the tools used, and
the domain being modeled.

Ontology Applications. Practical ontology applications relate to the so-called
general ontologies which have a rather general character and may be applied in a
knowledge base building from different domains and domain ontologies meaning
ontologies describing knowledge about a specific domain or a specific fragment
of the real world. Many such ontologies have been worked out and they are often
available on the Internet. They are, e.g., Dublin Core (see [79]), GFO (General
Formal Ontology [98]), OpenCyc/ResearchCyc (see [204]), SUMO (Suggested
Upper Merged Ontology [291]), WordNet (see [341]), DOLCE (Descriptive On-
tology for Linguistic and Cognitive Engineering [70]) and others.

Generally, ontologies are applied when the semantics of the data gathered is
crucial. It turns out that such a situation takes place quite often, particularly
when intelligent methods of data analysis are supposed to act effectively. That
is why ontologies more and more are useful in information technology projects.
Some examples of applications of ontologies are e-commerce, bioinformatics, geo-
graphical, information systems, regulatory and legal information systems, digital
libraries, e-learning, agent technology, database design and integration, software
engineering natural language processing, information access and retrieval, the
Semantic Web, Web services, medicine (see, e.g., [116] and [130] for more de-
tails).

Computer Systems for Creating and Using Ontologies. There is a series
of formal languages to represent ontologies. These are such languages as Web
Ontology Language (OWL [330]), Resource Description Framework (RDF [331]),
Ontology Inference Layer (OIL [198]), DARPA Agent Markup Language (DAML
[66]), CycL (see [65]), etc. However, the most dynamically developed one is OWL
which came to the existence as an improvement of the DAML, OIL and RDF
languages.
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There are also many computer systems for creating and using ontologies.
They are, e.g., Cyc (see [65]), OpenCyc (see [203]), Protege (see [241]), On-
toStudio (previously OntoEdit [201]), Ontolingua (see [200]), Chimaer (see [62]),
OilEd (see [199]), and others. Within these systems, the ontology is usually cre-
ated using convenient graphical tools which make it possible to enter all the
elements of ontology as well as their further edition and visualization.

Ontological systems very often possess mechanisms of concluding on the ba-
sis of ontology constructed. These mechanisms work in such a way that after
creating an ontology the system may be asked quite complex questions. They
concern the existence of an instance of a concept which satisfies certain logi-
cal conditions, defined using concepts, attributes, and relations occurring in the
ontology. For instance, in the ontology in Fig. 5, we could pose the following
questions:

– Who is the author of a given paper?
– Which papers have been reviewed by a given reviewer?
– Which persons belong to the programming committee?

From the technical point of view, information searching based on ontology
is performed with the help of questions formed in a formal language used to
represent ontology or its special extension. For instance, the language RDQL
(RDF Data Query Language [332]) is a question language similar to the language
SQL extending the RDF language. Usually, the ontological systems also enable
to form questions using graphical interface (see, e.g, [201, 241]).

4.2 Motivations for Approximation of Concepts and Relations from
Ontology

In current systems operating on the basis of ontology it is assumed that we pos-
sess complete information about concepts, that is, for each concept all objects
belonging to this concept are known by us. This assumption causes that, in order
to examine the membership of an object to the concept, it is enough to check if
this object occurs as an instance of this concept or not. Meantime, in practical
applications we often possess only incomplete information about concepts, that
is, for each concept, certain sets of objects constituting examples and counterex-
amples, respectively are given. It causes the necessity of approximating concepts
with the help of classifiers. For instance, using the ontology in Fig. 6 which
concerns safe vehicle driving on a road, it cannot be assumed that all concept
instances of this ontology are available. For example, for the concept safe driv-
ing, it cannot be assumed that the information about all possible cars driving
safely is available. That is why for such a concept, a classifier is constructed
which is expected to be able to classify examples of vehicles into those belonging
and those which do not belong to the concept.

Apart from that, the relations between concepts, defined in current systems
based on ontology, are usually precise (exact, crisp). For example, for the rela-
tion is-a in ontology from Fig. 5, if the relation between concepts author and
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Fig. 6. An ontology for safe driving

participant is to be precise (exact, crisp), then each author of a paper at a confer-
ence is a participant of this conference. In practice, however, it does not always
have to be that way. It is possible that some authors of papers are not con-
ference participants, particularly in the case of articles having many coauthors.
So, a relation between concepts can be imprecise (inexact, vague). Besides, on
the grounds of classical systems based on ontology, when we possess complete
information about concepts, the problem of vagueness of the above relation may
be solved by adding to the ontology an additional concept representing these
authors who are not conference participants and binding this new concept with
the concept person by the is-a relation. However, in practical applications, when
the available information about concepts is not complete, we are even not able to
check whether the relations under consideration are precise (exact, crisp). That
is why relations among concepts also require approximation.

In approximation of concepts occurring in ontology, there often appears the
following problem. In practical applications, usually is the so-called sensor data
available only (that is, data obtained by measurement using sensors, thus ob-
tained on a low level of abstraction). For example, by observing a situation on
a road, i.e., such data as speed, acceleration, location, the current driving lane,
may be obtained. Meanwhile, some concepts occurring in ontology are so com-
plex that they are separated by a considerable semantical distance from the
sensor data, i.e., they are defined and interpreted on very different levels of ab-
straction. Hence, approximation of such concepts using sensor data does not lead
to classifiers of satisfying quality (see, e.g., [77, 231, 352–354]). For instance, in
ontology from Fig. 6, such a complex concept is without a doubt the concept safe

68



driving because it is not possible to directly determine whether a given vehicle
goes safely on the basis of simple sensor data only.

If, however, apart from complex concepts there are simple concepts in on-
tology, that is, those which may be approximated using sensor data, and they
are directly or indirectly linked by relations to complex concepts, then appears
a need to use the knowledge about the concepts and relations among them to
approximate complex concepts more effectively. For example, in order to deter-
mine if a given vehicle drives safely, other concepts from ontology from Fig. 6,
linked by relations to the concept safe driving, may be used. For example, one
of such concepts is the possibility of safe stopping before the crossroad.

Safe driving

Safe distance from 
the front vehicle

Forcing the 
right of way

Possibility of going 
back to the right lane
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overtaking

Possibility of safe 
stopping before 
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Safe distance from 
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during overtaking
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Fig. 7. The ontology for safe driving revisited

The aim of this paper is to present set of methods for approximating complex
spatio-temporal concepts and relations among them assuming that the informa-
tion about concepts and relations is given in the form of ontology. To meet these
needs, by ontology we understand a finite set of concepts creating a hierarchy
and relations among these concepts which link concepts from different levels of
the hierarchy. At the same time, on top of this hierarchy there is always the most
complex concept whose approximation we are interested in aiming at practical
applications. For example, ontology from Fig. 6 may be presented hierarchi-
cally as in Fig. 7. At the same time, we assume that the ontology specification
contains incomplete information about concepts and relations occurring in on-
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tology, particularly for each concept, sets of objects constituting examples and
counterexamples for these concepts are given. Additionally, for concepts from the
lowest hierarchical level (sensor level) it is assumed that there are also sensor
attributes available which enable to approximate these concepts on the basis of
the examples and counterexamples given. This fact is marked in Fig. 7 by block
arrows.

4.3 Unstructured, Structured, and Complex Objects

Every concept mentioned in this paper is understood as a subset of a certain
set called the universe. Elements of the universe are called objects and they are
interpreted as states, incidents, vehicles, processes, patients, illnesses and sets
or sequences of entities mentioned previously. If such objects come from the
real-life world, then their perception takes place by detecting their structure.
Discovery of relevant object structure for particular tasks is a complex prob-
lem strongly related to perception, that is usually understood as the process
of acquiring, interpreting, selecting, and organizing sensory information (see,
e.g., [87, 91, 107, 118, 120, 156, 157, 169, 170, 192, 215, 277, 346, 353]). Many inter-
disciplinary research has been conducted in this scope in the overlapping areas of
such fields as cognitive science, psychology and neuroscience, pattern recognition
(see, e.g., [5, 140, 147, 150, 151, 280, 324]).

Structure of objects is used to define compound patterns over objects with
the simple or structured structures. The construction of such compound patterns
may be hierarchical. We search for patterns relevant for approximation of some
complex concepts. Notice, that together with the granularity of patterns one
should consider the computational complexity of satisfiability testing for such
patterns.

The structure of the perceived objects may be more or less complex, because
the objects may differ in complexity. It means both the degree of spatial as well
as the spatio-temporal complexity. When speaking about spatial complexity we
mean not only the fact that the objects differ in the features such as location,
size, shape, color, weight, but also that objects may consist of parts related with
each other in terms of dependencies (e.g., one may examine objects which are
object groups in the traffic). However, the spatio-temporal complexity results
from the fact that the perception of objects may be extended over time (e.g.,
one may examine objects which are single vehicles observed at a single time point
and objects which are also single vehicles, but they are observed over a certain
period of time). Both of these aspects of object complexity may cumulate which
additionally increases the diversity of appearing objects (e.g., objects which are
vehicle groups observed over a certain period of time are more complex than
both the objects which are vehicle groups observed at a single time point and
the objects which are single vehicles observed over a certain period of time).

However, in practice the perception of objects always takes place on an estab-
lished level of perceiving detail. This means that depending on the needs, during
perceiving objects only such details concerning their structure are taken into ac-
count that are necessary to conduct effective reasoning about the objects being
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perceived. For example, if we want to identify vehicles driven dangerously on the
road, then we are not interested in the internal construction of each vehicle but
rather the behavior of each vehicle as a certain whole. Hence, in the paper, we
examine objects of two types. The first type of objects are unstructured objects,
meaning those which may be treated as indivisible wholes. We deal with this
type of objects when we analyze patients, bank clients or vehicles, using their
parameters observed at the single time point.

The second type of objects which occurs in practical applications are struc-
tured objects which cannot be treated as indivisible wholes and are often regis-
tered during some period. Examples of this type of objects may be a group of
vehicles driving on a highway, a set of illnesses occurring in a patient, a robot
team performing a task.

In terms of spatiality, structured objects often consist of disjunctive parts
which are objects of uniform structure connected with dependencies. However,
generally, the construction of structured objects is hierarchical, that is, their
parts may also be structured objects. Additionally, a great spatial complexity
of structured objects causes that conducting effective reasoning about these ob-
jects usually requires their observation over a certain period of time. Thus, the
hierarchy of such objects’ structure may concern not only their spatial, but also
spatio-temporal structure. For example, to observe simple behaviors of a single
vehicle (e.g., speed increase, a slight turn towards the left lane) it is sufficient to
observe the vehicle over a short period of time, whereas to recognize more com-
plex behaviors of a single vehicle (e.g., acceleration, changing lanes from right
to the left one), the vehicle should be observed for a longer period of time, at
the same time a repeated observation of the above mentioned simple behaviors
may be extremely helpful here (e.g., if over a certain period the vehicle increased
speed repeatedly, it means that this vehicle probably accelerates). Finally, be-
havior observation of a vehicle group requires its observation for an even longer
period of time. It happens that way because the behavior of a vehicle group is
usually the aggregation or consequence of vehicle behaviors which belong to the
group (e.g., observation of an overtaking maneuver of one vehicle by another re-
quires following specific behaviors of both the overtaking and overtaken vehicle
for a certain period of time).

Obviously, each of structured objects usually may be treated as an unstruc-
tured object. If we treat any object as an unstructured object at a given moment,
it means that its internal structure does not interest us from the point of view
of the decision problems considered. On the other hand, it is extremely diffi-
cult to find real-life unstructured objects, that is, objects without parts. In the
real-life world, almost every object has some kind of internal structure and con-
sists of certain spatial, temporal or spatio-temporal parts. Particularly, objects
which are examples and counterexamples of complex concepts (both spatial and
spatio-temporal), being more or less semantically distant from sensor data, have
a complex structure. Therefore, one can say that they are complex objects. That
is why the division of complex objects into unstructured and structured ones is
of a symbolic character only and depends on the interpretation of these objects.
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If we are interested in their internal structure, then we treat them as structured
objects; otherwise we treat them as unstructured ones.

4.4 Representation of Complex Object Collections

If complex objects are gathered into a collection, then in order to represent the
available information about these objects, one may use information systems.
Below, we present an example of such an information system whose objects are
vehicles and attributes describe the parameters of the vehicle recorded at a given
time point.

Example 1. Let us consider an information system A = (U,A) such that A =
{x, y, l, v, t, id}. Each object of this system represents a condition of a considered
vehicle at one time moment. The attributes x and y provide the current location
of a vehicle, the l and v attributes provide us with current traffic lane on which
the vehicle is and the current vehicle speed respectively. The attribute t repre-
sents time in a number of seconds which has passed since the first observation of
the vehicle (Vt is a subset of the set of positive integer numbers). The attribute
id provides identifiers of vehicles.

The second, extremely crucial, example of the information system used in
this paper is an information system whose objects represent patient conditions
at different time points.

Example 2. Let us consider an information system A = (U,A) such that U =
{u1, ..., un} and A = {a1, ..., am, at, aid}. Each object of this system represents
medical parameters of a certain patient during one day of his/her hospitaliza-
tion. Attributes a1, ..., am describe medical parameters of the patient (examina-
tion results, diagnoses, treatments, medications, etc.), whereas the attribute at

represents time in a number of days which has passed since the first observation
of the patient (Vat is a subset of the set of positive integer numbers). Finally,
the attribute aid provides identifiers of patients.

Similarly to the two examples above, the attributes of complex objects may
be based on sensor data. However, in a general case the properties of complex
objects may be defined in languages which are defined specifically for a given
purpose (see Section 4.7).

4.5 Relational Structures

As we have written before, structured objects consist of parts which are struc-
tured objects of lesser complexity (hierarchical structure) or unstructured objects
connected by dependencies. Additionally, a great spatial complexity of struc-
tured objects causes that conducting effective conclusions about these objects
usually requires their observation for a certain period of time. Hence, there is
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a need to follow the spatio-temporal dependencies between parts of complex
objects. Therefore, the effective description of the structure of objects requires
not only providing spatial properties of individual parts of these objects, but
also describing the spatio-temporal relations between the parts of these objects.
Therefore, in order to describe the structure of complex objects and relations
between complex objects in this paper we will use relational structures (see, e.g.,
[74, 171]).

In order to define the relational structure using language and semantics of
first-order logic we assume that a set of relation symbols REL = {Ri : i ∈ I}
and function symbols FUN = {fj : j ∈ J} are given, where I, J are some finite
sets (see, e.g., [74]). For any functional or relational symbol there is assigned a
natural number called the arity of the symbol. Functional symbols and relations
of arity 0 are called constants. The set of constants is denoted by CONST.
Symbols of arity 1 are called unary and of arity 2 are called binary. In the
case of binary relational or functional symbols we usually use traditional infix
notation. For instance we write x ≤ y rather than ≤ (x, y). The set of functional
and relational symbols together with their arities is called the signature. The
interpretation of a functional symbol fi (a relational symbol Ri) over the set A
is a function (a relation) defined over the set A and denoted by fA

i (RA
i ). The

number of arguments of a function fA
i (a relation RA

i ) is equal the arity of fi

(Ri). Now, we can define the relational structure of a given signature (see, e.g.,
[74, 171]).

Definition 2. (A relational structure of a given signature)
Let Σ = REL ∪ FUN be a signature, where REL = {Ri : i ∈ I} is a set of
relation symbols and FUN = {fj : j ∈ J} is a set of function symbols, where
I, J are some finite sets.

1. A relational structure of signature Σ is a triple (D,R,F) where
– D is a non-empty finite set called the domain of the relational structure,
– R = {RD

1 , ..., RD
k } is a finite (possibly empty) family of relations defined

over D such that RD
i corresponds to symbol Ri ∈ REL and RD

i ⊆ Dni

where 0 < ni ≤ card(D) and ni is the arity of Ri, for i = 1, ..., k,
– F = {fD

1 , ..., fD
l } is finite (possibly empty) family of functions such that

fD
j corresponds to symbol fj ∈ FUN and fD

j : Dmj −→ D where 0 ≤
mj ≤ card(D) and mj is the arity of fj, for j = 1, ..., l.

2. If for any f ∈ F, f : D0 −→ D, then we call such a function constant and
we identify it with one element of the set D, corresponding to f .

3. If (D,R,F) is a relational structure and F is empty, then such relational
structure is called pure relational structure and is denoted by (D,R).

A classical example of a relational structure is a set of real numbers with
operations of addition and multiplications and ordering relation.

A typical example of a pure relational structure is a directed graph whose
domain is set of graph nodes and the family of relations consists of one relation
described by a set of graph edges.
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Fig. 8. An example of spatial complex object

The example below illustrates how relational structures may be used to de-
scribe the spatial structure of a complex object.

Example 3. Let us examine the complex object which is perceived as an image
in Fig. 8. In this image one may notice a group of six cars: A, B, C, D, E, F . In
order to define the spatial structure of this car group, the most crucial thing is
defining the location of cars towards each other and defining the diversity of the
driving directions of individual cars. That is why the spatial structure of such a
group may be described with the help of relational structure (S,R), where:

– S = {A,B, C,D, E, F},
– R = {R1, R2, R3, R4}, where:

• ∀(X, Y ) ∈ S × S : (X,Y ) ∈ R1 iff X is driving directly before Y ,
• ∀(X, Y ) ∈ S × S : (X,Y ) ∈ R2 iff X is driving directly behind Y ,
• ∀(X, Y ) ∈ S × S : (X, Y ) ∈ R3 iff X is coming from the opposite

direction in comparison with Y ,
• ∀(X, Y ) ∈ S × S : (X,Y ) ∈ R4 iff X is driving in the same direction as

Y .

For instance, it is easy to see that (B, A), (C,B), (D, C), (F,E) ∈ R1, (A,B),
(B,C), (C, D), (E, F ) ∈ R2, (E, C), (E, B), (F,A) ∈ R3 and (A,C), (B, D),
(E, F ) ∈ R4.

Complex objects may also have spatio-temporal structure. The example be-
low shows this type of a structured object.

Example 4. Let us examine the complex object which is represented with the
help of three images F1, F2 and F3 recorded at three consecutive time points
(see Fig. 9). In image F1 one may notice cars A, B, C and D, whereas in image
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Fig. 9. An example of spatio-temporal complex object

F2 we see cars E, F , G and H. Finally, in image F3 we see cars I, J , K and L
(see Fig. 9). It is easy to notice that pictures F1, F2 and F3 may be treated as
three frames chosen from a certain film made e.g., from an unmanned helicopter
conducting a road observation, and at the same time each consecutive frame is
distant in time from the previous one by about one second. Therefore, in all these
pictures we see the same four cars, at the same time the first car is perceived
as car A, E or J , the second car is perceived as car B, F or I, the third car is
perceived as car C, G or L and the fourth car is perceived as car D, H or K. The
spatial structure of complex object ST = {A,B,C, D,E, F, G, H, I, J} may be
described with the help of relational structure similar to the one in Example 3.
However, object ST has spatio-temporal structure which should be reflected in
relational structure describing complex object ST . That is why, to the relation
family R from Example 3 we add relation Rt determined in the following way:

∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ Rt iff X represents the same vehicle as Y and
X was recorded earlier than Y .

For instance, it is easy to see that (A, E), (H, K) ∈ Rt, but (G,C), (I, F ) 6∈ Rt

and (C, H), (F,K) 6∈ Rt.
Moreover, we modify the definition of the remaining relations from family R:

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R1 iff X, Y were noticed in the same frame
and X is going directly before Y ,

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R2 iff X, Y were noticed in the same frame
and X is driving directly behind Y ,

– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R3 iff X, Y were noticed in the same frame
and X is coming from the opposite direction in comparison with Y ,
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– ∀(X, Y ) ∈ ST × ST : (X, Y ) ∈ R4 iff X, Y were noticed in the same frame
and X is driving in the same direction as Y .

If some set of complex objects is perceived as an unstructured object (its
parts are not distinguished) and these objects belong to the object set of a
certain information system, then a structure of such set of complex objects is
described by relational structure, that we call a trivial relational structure.

Definition 3. Let A = (U,A) be an information system. For any set of objects
U ′ ⊆ U we define a relational structure (Dom,R,F) such that Dom = {U ′}, R
and F are empty families. Such relational structure is called a trivial relational
structure.

The above trivial relational structures are used to approximate spatial con-
cepts (see Section 5).

In each collection of complex objects there may occur relations between ob-
jects belonging to this collection. That is why each collection of complex objects
may be treated as a complex object whose parts are objects belonging to the
collection. Hence, the structure of complex object collection may be described us-
ing relational structure, where the domain elements of this structure are objects
which belong to this collection (see Section 4.7).

4.6 Languages and Property Systems

In the paper, we use many special languages to define features of complex objects.
Any language L is understood as a set of formulas over a given finite alphabet
and is constructed in the following way.

1. First, we define an alphabet of L, some atomic formulas and their semantics
by means of some satisfiability relation |=L. The satisfiability relation is a
binary relation in X ×L, where X denotes a universe of elements (objects).
We will write x |=L α to denote the fact that |=L holds for the pair (x, α)
consisting of the object x and the formula α.

2. Next, we extend, in the standard way, the satisfiability relation |=L on
Boolean combination of atomic formulas, i.e., on the least set of formulas
including atomic formulas and closed with respect to the classical proposi-
tional connectives: disjunction (∨), conjunction (∧), negation (¬) using the
following rules:
(a) x |=L (α ∨ β) iff x |=L α or x |=L β,
(b) x |=L (α ∧ β) iff x |=L α and x |=L β,
(c) x |=L ¬(α) iff non(x |=L α),
where α, β are formulas, x is an object, and the symbol |=L denotes the
satisfiability relation of the defined language.

3. Finally, for any formula α ∈ L, the set |α|L = {x ∈ X : x |=L α} can be
constructed that is called the meaning (semantics) of α in L.
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Hence, in the sequel, in specifying languages and their semantics we will
only define atomic formulas and their semantics assuming that the extension on
Boolean combination is the standard one. Moreover, in definitions of alphabets
over which languages are constructed we often omit listing parentheses assuming
that the relevant parentheses are always included in alphabets.

Besides, in modeling complex objects we often use structures called property
systems.

Definition 4. (A property system)
A property system is any triple P = (X,L, |=), where X is a set of objects; L is
a language over a given finite alphabet; and |=⊆ X×L is a satisfiability relation.

We also use the following notation:

1. We write, if necessary, XP , LP , |=P , instead of X, L, and |=, respectively.
2. |α|P = {x ∈ X : x |=P α} is the meaning (semantics) of α in P.
3. By aα for α ∈ LP we denote a function (attribute) from XP into {0, 1}

defined by aα(x) = 1 iff x |=P α for x ∈ XP .
4. Any property system P with a finite set of objects and a finite set of formulas

defines an information system AP = (XP , A), where A = {aα}α∈L.

It is worthwhile mentioning that the definition of any information system
A = (U,A) constructed in hierarchical modeling should start from definition of
the universe of objects of such an information system. For this purpose, we select
a language in which a set U∗ of complex objects is defined, where U ⊆ U∗. For
specifying the universe of objects of A, we construct some property system Q
over the universe U∗ of already constructed objects. The language LQ consists
of formulas which are used for specifying properties of the already constructed
objects from U∗. To define the universe of objects of A, we select a formula α
from LQ. Such a formula is called type of the constructed information system
A. Now, we assume that the object x belongs to the universe of A iff x satisfies
(in Q) the formula α, i.e., x |=Q α, where x ∈ U∗. Observe, that the universe
of objects of A can be an extension of the set U because U is usually only a
sample of possible objects of A. Notice that the type α selected for a constructed
information system defines a binary attribute aα for this system. Certainly, this
attribute can be used to define the universe of the information system A (see
Section 4.7 for more details). Notice also that the property system Q is con-
structed using property systems and information systems used in modeling the
lower level of concept hierarchy.

4.7 Basic Languages of Defining Features of Complex Objects

As we have written before, the perception of each complex object coming from
the real-life world takes place by detecting its structure (see Section 4.3), whereas
the features of a given complex object may be determined only by establishing
the features of this structure. The structures of complex objects which are the
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result of perception of complex objects may be modeled with the help of rela-
tional structures (see Section 4.5). Therefore, by the features of complex objects
represented with relational structures we will understand the features of these
structures.

Each collection of complex objects K may be represented using an informa-
tion system A = (U,A), where the object set U is equal to collection K and
the attributes from set A describe the properties of complex objects from collec-
tion K and more precisely, the properties of relational structures representing
individual objects from this collection.

In the simplest case, the attributes from set A may be sensor attributes, that
is, they represent the readings of sensors recorded for objects from set U (see
Example 1 and Example 2 from Section 4.4).

However, in the case of structured objects whose properties usually cannot
be described with the help of sensor attributes, the attributes from set A may
be defined with the use of the properties of these objects’ parts, the relations
between the parts and information about the hierarchy of parts expressed e.g.,
with the help of concept ontology (see Section 4.10).

In practice, apart from the properties of complex objects described above
and represented using the attributes from set A, other properties of complex
objects are also possible which describe the properties of these objects on a
slightly higher level of abstraction than the attributes from set A. These prop-
erties are usually defined by experts on the basis of domain knowledge and are
often represented with the help of concepts, that is, attributes which have only
two values. For the table in Example 1, e.g., “safe driving”could be such a con-
cept. By adding such an attribute to the information system, which is usually
called decision attribute or decision and marking it with d, we obtain decision
table (U,A, d). However, effective approximation of a decision attribute d using
attributes from set A usually requires defining new attributes which are often
binary attributes representing concepts. Such concepts may be defined in an
established language on the basis of attributes available in set A.

In this paper, such language is called a language for defining features of
complex objects. In the simplest case such a language may be the language of
mathematical formulas in which formulas enabling calculating the specific prop-
erties of a complex object are formed. For example, if the complex object is a
certain subset of a set of rational numbers with simple addition and multiplica-
tion and the order relation, then the attributes of such a complex object may
be: the minimal value, the maximum value or the arithmetic average over this
set.

However, in many cases in order to define attributes of complex objects spe-
cial languages should be defined. In this paper, to define a specific language
defining complex object properties Tarski’s approach is used which requires the
language’s alphabet, set of language formulas and language formula semantics
(see, e.g., [309] and Section 4.6).
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For example, in order to define concepts describing new properties of ob-
jects from a given information system a well known language called generalized
descriptor language may be used (see, e.g., [187, 217]).

Definition 5. (A generalized descriptor language)
Let A = (U,A) be an information system. A generalized descriptor language of
information system A (denoted by GDL(A) or GDL-language, when A is fixed)
is defined in the following way:

• the set ALGDL(A) = A ∪ ⋃
a∈A

Va ∪ {¬,∨,∧} is an alphabet of the language

GDL(A),
• expressions of the form (a ∈ V ), where a ∈ A and V ⊆ Va are atomic
formulas of the language GDL(A).

Now, we determine the semantics of the language GDL(A). The language
GDL(A) formulas may be treated as the descriptions of object occurring in
system A.

Definition 6. Let A = (U,A) be an information system. The satisfiability of
an atomic formula φ = (a ∈ V ) ∈ GDL(A) by an object u ∈ U from table A
(denoted by u |=GDL(A) φ) is defined in the following way:

u |=GDL(A) (a ∈ V ) iff a(u) ∈ V.

We still need to answer the question of defining the atomic formulas (expres-
sions of the form a ∈ V ) belonging to the set of formulas of the above language.

In the case of symbolic attributes, in practical applications the formulas of
the form a ∈ V are usually defined using relations: “=” or “6=” (e.g., a = va

or a 6= va for some symbolic attribute a such that va ∈ Va). However, if the
attribute a is a numeric one, then the correct atomic formulas may be a < va,
a ≤ va, a > va or a ≥ va. Atomic formulas may be also defined using intervals, for
example: a ∈ [v1, v2], a ∈ (v1, v2], a ∈ [v1, v2) or a ∈ (v1, v2), where v1, v2 ∈ Va.

We present a few examples of formulas of the language GDL(A), where
A = (U,A), A = {a1, a2, a3} and v1 ∈ Va1 , v2 ∈ Va2 and v3, v4 ∈ Va3 .

– (a1 = v1) ∧ (a2 6= v2) ∧ (a3 ∈ [v3, v4)),
– (a1 6= v1) ∨ (a2 = v2),
– ((a1 = v1) ∨ (a2 = v2)) ∧ (a3 > v3),
– ¬((a1 = v1) ∧ (a3 ≤ v3)) ∨ ((a2 6= v2) ∧ (a3 ∈ (v3, v4])).

Another example of a language defining complex object properties may be a
neighborhood language. In order to define the neighborhood language a dissimi-
larity function of pairs of objects of the information system is needed.

Definition 7. Let A = (U,A) be an information system.

1. We call a function DISMA : U × U −→ [0, 1] the dissimilarity function of
pairs of objects in the information system A, if the following conditions are
satisfied:
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(a) for any pair (u1, u2) ∈ U × U :

DISMA(u1, u2) = 0 ⇔ ∀ a ∈ A : a(u1) = a(u2),

(b) for any pair (u1, u2) ∈ U × U : DISMA(u1, u2) = DISMA(u2, u1),
(c) for any u1, u2, u3 ∈ U :

DISMA(u1, u3) ≤ DISMA(u1, u2) + DISMA(u2, u3).

2. For any u1, u2, u3, u4 ∈ U , if DISMA(u1, u2) < DISMA(u3, u4) then we
say that objects from the pair (u3, u4) are more different than objects from
the pair (u1, u2), relatively to DISMA.

3. If any u1, u2 ∈ U satisfies DISMA(u1, u2) = 0 then we say that objects
from the pair (u1, u2) are not different, relatively to DISMA, i.e., they are
indiscernible, relatively to DISMA.

4. If any u1, u2 ∈ U satisfies DISMA(u1, u2) = 1 then we say that objects from
the pair (u1, u2) are completely different, relatively to DISMA.

Let us notice that the above dissimilarity function is not a metric (distance)
but a pseudometric. The reason is that the first metric condition is not satisfied
which in the case of the DISMA function would state that the distance between
the pair of objects is equal to 0 if and only if they are the same objects. This con-
dition is not satisfied because of the possibility of existence of non-one-element
abstraction classes of the relation INDA(A), that is, because of the possibility
of repetition of objects in the set U .

We present an example of dissimilarity function of pairs of objects of infor-
mation system.

Example 5. Let A = (U,A) be an information system A = (U,A), where A =
{a1, ..., am} is the set of binary attributes. We define the dissimilarity function
of pairs of objects in the following way:

∀(u1, u2) ∈ U × U : DISMA(u1, u2) =
card({a ∈ A : a(u1) 6= a(u2)})

card(A)
.

Let us notice, that the dissimilarity function defined above is based on a
widely known and introduced by Hamming measurement of dissimilarity of two
sequences of the same length expressing number of places (positions) on which
these two sequences differ.

Now, we can define the neighborhood language.

Definition 8. (A neighborhood language)
Let A = (U,A) be an information system. A neighborhood language for the
information system A (denoted by NL(A) or NL-language, when A is fixed) is
defined in the following way:

• the set ALNL(A) = U ∪ (0, 1] ∪ {¬,∨,∧} is an alphabet of the language
NL(A),
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• expressions of the form (u, ε), where u ∈ U and ε ∈ (0, 1] called as neigh-
borhoods of objects, are atomic formulas of the language NL(A).

Now, we determine the semantics of language NL(A). The language NL(A)
formulas may be treated as the descriptions of object occurring in system A.

Definition 9. Let A = (U,A) be an information system and DISMA be a
dissimilarity function of pairs of objects from the system A. The satisfiability
of an atomic formula φ = (u0, ε) ∈ NL(A) by an object u ∈ U from table A
relative to dissimilarity function DISMA (denoted by u |=NL(A) φ), is defined
in the following way:

u |=NL(A) (u0, ε) ⇔ DISMA(u0, u) ≤ ε.

Each of formula of languages GDL or NL describes a certain set of objects
which satisfy this formula (see Fig. 10). According to Definitions 5 and 8 a set
of such objects is included in a set of objects U . However, it is worth noticing
that these formulas may be satisfied by objects from outside the set U , that is,
belonging to an extension of the set U (if we assume that attribute values on
such objects can be received) (see Fig. 10).

 

The meaning of  
the formula φ 

U - the set of 
objects from the 

system A 

U* - an extension  
of the set U 

Fig. 10. The illustration of the meaning of a given formula

An explanation is needed if it comes to the issue of defining pairs of ob-
jects in an information system with a dissimilarity function. For information
systems many such functions may be defined applying various approaches. A re-
view of such approaches may be found in, e.g., [7, 82, 96, 187, 259, 334, 336, 340,
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342, 343]). However, the approaches known from literature usually do not take
into account the full specification of a specific information system. That is why
in a general case the dissimilarity function of a pair of objects should be de-
fined by experts individually for each information system on the basis of domain
knowledge. Such a definition may be given in the form of an arithmetical ex-
pression (see Example 5). Very often, however, experts in a given domain are
not able to present such an expression and content themselves with presenting
a set of value examples of this function, that is, a set of pairs of objects labeled
with a dissimilarity function value which exists between these objects. In this
last case, defining dissimilarity function requires approximation with the help
of classifiers. The classifier approximating the dissimilarity function are called
dissimilarity classifier of pairs of objects for an information system.

Definition 10. Let A = (U,A) be an information system A = (U,A) (where
A = {a1, ..., am}) and DISMA is a given dissimilarity function of pairs of objects
from the system A.

1. A dissimilarity function table for the system A relatively to the dissimilarity
function DISMA is a decision table AD = (UD, AD, d), where:
– UD ⊆ U × U ,
– AD = {b1, ..., bm, bm+1, ...., b2m}, where attributes from AD are defined

in the following way:

∀u = (u1, u2) ∈ UD ∀bi ∈ AD : bi(u) =
{

ai(u1) i ≤ m
ai−m(u2) otherwise.

– ∀u = (u1, u2) ∈ UD : d(u) = DISMA(u1, u2).
2. If AD = (UD, AD, d) is the dissimilarity function table for the system A

then any classifier for the table AD is called a dissimilarity classifier for the
system A. Such classifier is denoted by µDISMA

.

Let us notice that in the dissimilarity table of the information system A there
do not exist all the possible pairs of objects of system A, but only a certain chosen
subset of the set of these pairs. This limitation is necessary, for the number of
pairs of U × U product may be so large that the expert is not able to give all
the values of decision attribute d for them. That is why in the dissimilarity table
there are usually only found pairs chosen by the expert which represent typical
cases of dissimilarity function determining which may be generalized with the
help of a classifier.

The dissimilarity classifier may serve determining the value of dissimilarity
function for the pair of objects from the information system. According to Defi-
nition 10 such pairs come from set U ×U , that is, they are pairs of objects from
a given information system A. However, it should be stressed that the dissim-
ilarity classifier may determine the values of the dissimilarity function for the
pairs of objects which do not belong to system A, that is, those which belong to
extension of A. Hence, dissimilarity classifiers may be treated as a way to define
concepts (new two-argument relations).
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The described approach to the measure of dissimilarity is applied in this
paper to the measure of dissimilarity between objects in information systems (see
Section 6.7 and Section 6.19), between states in planning graphs (see Section 7.9)
and plans (see Section 7.20).

4.8 Types of Complex Objects

In a given complex dynamical system there may occur many different complex
objects. The collection of all such objects may be represented with the help of
information system, where the set of this system’s objects correspond with the
objects of this collection and the attributes of this system describe the properties
of complex objects from the collection and more precisely the properties of rela-
tional structures representing individual objects of this collection. Such a system
for a given complex dynamical system we call in this paper a total information
system (TIS) for a given complex dynamical system.

Attributes of the system TIS may be sensor attributes or they are defined in
an established language which helps to express the properties of complex objects
(see Section 4.7). To the attribute set of the system TIS one may add the binary
decision attribute representing the concept describing an additional property of
complex objects. The decision attribute may be further approximated with the
help of attributes available from the system TIS (see Section 4.7).

However, in practice the concepts which are examined are defined only in the
set of complex objects of a certain type occurring in a given complex dynamical
system. In the example concerning the traffic (see Example 1) such a concept may
concern only cars (e.g., safe overtaking of one car by another), whereas in the
example concerning patient treatment (see Example 2), the examined concepts
may concern the treatment of infants only, not other people like children, adults
or the elderly whose treatment differs from the treatment of infants.

Therefore, we need a mechanism which enable to appropriate selection of
complex objects, and more precisely relational structures which they represent
and in which we are interested at the moment. In other words, we need a method
which enable to select objects of a certain type from the system TIS.

In the paper, we propose a method of adding a binary attribute to TIS to
define the types of complex objects, and more precisely the types representing
the objects of relational structures. The value Y ES of such an attribute in a
given row, means that the given row represents the complex object that is of
the examined type, whereas value NO means that the row represents a complex
object which is not of the examined type. The attributes defining types may be
defined with the help of attributes from the system TIS in the language GDL or
any other language in which the attributes form the system TIS were defined.

The example below shows how the attributes defining the types of complex
objects may be defined.

Example 6. Let us assume that in a certain hospital in the children’s ward there
was applied information system A = (U,A) to represent the information about
patients’ treatment, such that U = {u1, ..., un} and A = {a1, ..., am, aage, at, aid}.
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Each object of this system represents medical parameters of a certain child in one
day of his/her hospitalization. Attributes a1, ..., am describe medical parameters
of the patient (examination results, diagnoses, treatments, medications, etc.),
while the attribute aage represents the age of patient (a number of days of life),
the at attribute represents the value of a time unit (a number of days) which has
elapsed since the first observation of the patient and the attribute aid provides
identifiers of patients. If system A is treated as the total information system
for a complex dynamical system understood as a set of all patients, then the
“infant” type of patient (it is a child not older than 28 days) labeled with Tinf

may be defined with the help of formula (aage ≤ 28).

A slightly more difficult situation appears in the case of the information
system from Example 1, when we want to define the passenger car type of object.
A written description of the formula defining such a type may be as follows: the
object is perceived as a rectangle whose length is two to five times bigger than its
width, and the movement of the object takes place in the direction parallel to the
longer side of the rectangle. It is easy to see that in order to define such a formula
the information system from Example 1 would have to be complemented with
sensor attributes determining the coordinates of the characteristic points of the
object for determining its sizes, shape and movement direction.

If we define an additional attribute by determining the type of object in
the system TIS, then we can select information subsystem in which all objects
will have the same value of this attribute. Using a subsystem selected in such
a way one may analyze concepts concerning the established type of objects.
Obviously, during the approximation of these concepts the attribute determining
the type according to which an object selection was previously performed is
useless, because its value is the same for all selected objects. Therefore, the
attributes defining the type of object are not used to approximate concepts, but
only to an initial selection of objects for the need of concept approximation.

In a given complex dynamical system there may be observed very different
complex objects. The diversity of objects may express itself both through the
degree of spatial complexity and by the spatio-temporal complexity (see Sec-
tion 4.3). Therefore, in a general case it should be assumed that in order to
describe the properties of all complex objects occurring in a given dynamical
system, many languages must be used. For instance, to describe the properties
of a single vehicle at a single time point, the information obtained directly from
the sensors are usually used (e.g., speed, location), to describe the properties of
a vehicle observed for a certain period of time (time window), a language may
be used which enables to define the so-called temporal patterns observed in time
windows (see Section 6.6), whereas in order to describe the properties of groups
of vehicles a language may be used which enable to define temporal patterns ob-
served in the sequences of time windows (see Section 6.17). Moreover, it usually
happens that not each of these languages is appropriate to express the proper-
ties of all complex objects occurring in a given complex dynamical system. For
example, if we want to apply the language of temporal patterns to determine the
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properties of a vehicle at a single time point, then it is not feasible because this
language requires information about the vehicle collected in the whole time win-
dow not at a single time point. Therefore, the approach to recognizing types of
complex objects described above must be complemented. Namely, the attributes
defining types of complex objects, apart from the values Y ES and NO men-
tioned before, may also have the UNKNOWN value. This value means that for
a given complex object it is not possible to compute correctly the value of an
attribute.

Summarizing, if we examine complex objects from a certain complex dynam-
ical system and claim that a given complex object u is a complex object of type
T , then it means that in the total information system constructed for this sys-
tem there exists such attribute aT that it takes the value Y ES for object u. One
may also say that a given complex object u is not a complex object of type T
which means that attribute aT corresponding with type T takes the value NO
for object u. The value of attribute aT for object u may also take the value
UNKNOWN which in practice also means that object u is not of type T .

A given complex object may be an object of many types, because there may
exist many attributes identifying types in TIS which take the value Y ES for
this object. For example, in the information system from Example 6 the type of
object Tr may be defined which can be described in words as the patient recently
admitted to hospital (that is admitted not earlier than three days ago) with the
help of formula (at ≤ 3). Then, the infant admitted to hospital for treatment
two days ago is a patient of both type Tinf and Tr.

Finally, let us notice that the above approach to determining types of objects
may be applied not only to complex objects which were observed at the moment
of defining the formula determining the type, but also to those complex objects
which appeared later, that is, belong to the extension of the system TIS. It
results from the properties of formulas of the language GDL which define the
types of objects in the discussed approach.

4.9 Patterns

If an attribute of a complex object collection is a binary attribute (it describes a
certain concept), then the formula enables to determine its values is usually called
a pattern for the concept. Below, we present a pattern definition assuming that
there is given a language L defining features of complex objects of a determined
type, defined using Tarski’s approach (see, e.g., [309]).

Definition 11. (A pattern)
Let S be a collection of complex objects of a fixed type T . We assume C ⊆ S is a
concept and L is language of formulas defining (under a given interpretation of L
defined by a satisfiability relation) features of complex objects from the collection
S (i.e., subsets of S defined by formulas under the given interpretation).

1. A formula α ∈ L is called a pattern for concept C explained in the language
L if exists s ∈ S such that s ∈ C and s |=L α (s satisfies α in the language
L).
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2. If s |=L α then we say that s matches pattern α or s supports pattern α.
Otherwise s does not match pattern or does not support pattern α.

3. A pattern α ∈ L is called exact relative to the concept C when for any s ∈ S,
if s |=L α then s ∈ C. Otherwise, a pattern α is called inexact.

4. The number:

support(α) = card(|α|L)

is called the support of the pattern α.
5. The confidence of the pattern α relatively to the concept C we denote as

confidenceC(α) and define in the following way:

confidenceC(α) =
card({s ∈ C : s |=L α})

support(α)
.

Thus patterns are simple but convenient way of defining complex object prop-
erties and they may be applied to information system construction representing
complex object collections.

Despite the fact that according to Definition 11, patterns are supposed to
describe complex object properties belonging to a given complex object collec-
tion S, they may also describe complex object properties from outside of the S
collection. However, they always have to be complex objects of the same type as
the objects gathered in collection S.

Patterns may be defined by experts on the basis of domain knowledge. In
such a case the expert must define a needed formula in a chosen language which
enables to test objects on their membership to the pattern. In a general case,
patterns may be also approximated with the help of classifiers. In this case, it
is required from the expert to give only examples of objects belonging to the
pattern and counterexamples of objects not belonging to the pattern. Then,
however, attributes which may be used to approximate the pattern are needed.

Sometimes in an information system representing a complex object collection
one of the attributes is distinguished. For example, it may represent a concept
distinguished by the expert which requires approximation using the rest of the
attributes. Then such an information system is called a decision table (see Sec-
tion 2.1).

The decision table constructed for a complex object collection may be useful
in classifier construction which ensures the approximation of the distinguished
decision attribute. The approximation may be performed with the help of clas-
sical classifiers (see Section 2) or stratifying classifiers (see Section 3).

As we wrote before, language formulas serving to define complex object prop-
erties may be satisfied by complex objects from outside of a given collection of
complex objects. Thus, for any complex object being of the same type as complex
objects from a given collection, it may be classified using the above mentioned
classifier.
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4.10 Approximation of Concepts from Ontology

The method of using ontology for the approximation of concepts presented in
this section consists of approximating concepts from the higher level of ontology
using concepts from the lower levels.

For the concepts from the lowest hierarchical level of ontology (sensor level),
which are not dependent on the rest of the concepts, it is assumed that there are
also available the so called sensor attributes which enable to approximate these
concepts on the basis of applied positive and negative examples of objects.

Below, we present an example of concept approximation using sensor at-
tributes in a certain ontology.

Example 7. Let us consider the ontology from Fig. 11. Each vehicle satisfying the
established condition expressed in a natural language belongs to some concepts
of this ontology. For example, to the concept of Safe overtaking belong vehicles
which overtake safely, while to the concept of Possibility of safe stopping before
the crossroads belong vehicles whose speed is so small that they may safely
stop before the crossroads. Concepts of the lowest ontology level that is Safe
distance from the opposite vehicle during overtaking, Possibility of going back to
the right lane, Possibility of safe stopping before the crossroads, Safe distance
from the front vehicle, Forcing the right of way and Safe distance from the front
vehicle are sensor concepts, that is, they may be approximated directly using
sensor data. For instance, the concept of Possibility of safe stopping before the
crossroads may be approximated using such sensor attributes as vehicle speed,
vehicle acceleration, distance to the crossroads, visibility and road humidity.

On the higher levels of ontology, however, sensor attributes may not be used
directly to approximate concepts because the semantical distance of approx-
imated concepts from sensor attributes is too large and they are defined on
different levels of abstraction. For example, if we wish to approximate the con-
cept of safe driving on the higher level and on the sensor level we have at our
disposal only attributes giving simple parameters of vehicle driving (that is,
location, speed, acceleration, etc.), then it is hard to expect that these parame-
ters allow to make the approximation of such a complex concept as safe driving
possible. That is why in this paper we propose a method of approximating the
concept from the higher level of ontology only with the help of concepts from the
ontology level that is lower by one level, which are closer to the concept under
approximation than the sensor data. The proposed approach to the approxima-
tion of concepts of the lower level is based on an assumption that a concept from
the higher ontology level is “not too far” semantically from concepts lying on
the lower level of ontology. “Not too far” means that it can be expected that
it is possible to approximate a concept from the higher level of ontology using
concepts from the lower level for which classifiers have already been built.

The proposed method of approximating concepts of the higher ontology level
is based on constructing a decision table for a concept on the higher ontology level
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S E N S O R   DATA
 

Fig. 11. An ontology as a hierarchy of concepts for approximation

whose objects represent positive and negative examples of the concept approxi-
mated on this level; and at the same time a stratifying classifier is constructed
for this table. In this paper, such a table is called a concept approximation table
of the higher ontology level concept.

One of the main problems related to construction of the concept approxima-
tion table of the higher ontology level concept is providing positive and negative
examples of the approximated concept on the basis of data sets. It would seem
that objects which are the positive and negative examples of the lower ontology
levels concepts may be used at once (without any changes) for concept approx-
imation on the higher ontology level. If it could be possible to perform, any
ontology concepts could be approximated using positive and negative examples
available from the data sets. However, in a general case, because of semantical
differences between concepts and examples on different levels of ontology, ob-
jects of the lower level cannot be directly used to approximate concepts of the
higher ontology level. For example, if on a higher level of a concept hierarchy,
we have a concept concerning a group of vehicles, and on a lower one concepts
concerning single vehicles, then usually the properties of single vehicles (defined
in order to approximate concepts of lower levels of ontology) are not sufficient to
describe properties of a whole group of vehicles. Difficulties with approximation
of concepts on the higher ontology level with the help of object properties from
the lower ontology level also appear when on the higher ontology level there
are concepts concerning another (e.g., longer) period of time than concepts on
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the lower ontology level. For example, on the higher level we examine a concept
concerning a time window (a certain time period), yet on the lower level they
are concepts concerning a certain instant, i.e., a time point (see Section 6).

That is why in this paper we propose a method for constructing objects of an
approximation table of the concept from the higher ontology level (that is, posi-
tive and negative examples of this concept) by arranging sets of objects which are
positive and negative examples of the lower ontology level concepts. These sets
must be constructed in such a way, that the properties of these sets considered
together with relationships between their elements could be used for the approx-
imation of the higher ontology level concept. However, it should be stressed here
that the complex objects mentioned above (being positive and negative exam-
ples of concepts from the higher and lower ontology levels) are representation of
real-life objects only. In other words, we assume that the relational structures
are expressing the result of perception of real-life objects (see Section 4.5 and
Fig. 12). Therefore, by the features of complex objects represented with rela-
tional structures we understand the features of these structures. Such features
are defined using attributes from information systems from the higher and lower
ontology levels.

Real-life 
complex objects

Relational structures 
(representations of real-life 

complex objects)

Fig. 12. Real-life complex objects and representations of their structures

In Fig. 13, we illustrate the general scheme for construction of the concept
approximation table for a given concept C depending in some ontology on con-

89



cepts from the lower level (relatively to the concept C). In the further part of
the subsection, this scheme will be explained in detail.

As we have written before, in this paper we assume that for the concepts of
the lower ontology level a collection of objects which are positive and negative
examples of these concepts is available. Let us also assume that they are ob-
jects of a certain information system A = (U,A), where attributes from set A
represent all available properties of these objects (see label L1 from the Fig. 13).

It should be stressed here that the information about the membership degree
of objects from set U to the concepts from the lower ontology level may serve
defining new attributes which are appended to the set A. However, providing
such information for a randomly chosen object (also for an object which will
appear in the future) requires previous approximation of concepts of the lower
level with the help of classical or stratifying classifiers. At this point, we assume
that for the concepts of the lower ontology level such classifiers were already
constructed, while our aim is to approximate the concept of the higher ontology
level. Incidentally, in the simplest case, the concepts of the lower ontology level
may be approximated with the help of sensor attributes (see Example 7).

Apart from attributes defined on the basis of the membership of objects to
the concepts or to the layers of the concepts, there may be other attributes in
set A. For example, it may be an attribute identifying the recording time of
values of the remaining attributes from set A for a given object from set U or
an attribute unambiguously identifying individual objects or groups of objects
from set U .

Objects being positive and negative examples of the lower ontology level
concepts can be very often used to define new objects represented by relational
structures by using available information about these objects. Relations defined
in such structures may be also used to filter (extract) sets of objects or, in a
more general case, sets of relational structures or their clusters as new objects
for a higher level concept.

Relations among objects may be defined on the basis of attributes from the
information system A, with the use of relational structures defined on the value
sets of attributes from set A (see label L2 from the Fig. 13). For example, the
value set of attribute Vat from Example 2 is a subset of the set of integer numbers.
Therefore, it is a domain of a relational structure (Vat , {Rat}), where relation
Rat is defined in the following way:

∀(t1, t2) ∈ Vat × Vat : t1Ratt2 ⇔ t1 ≤ t2.

Relation Rat may be in a natural way, generalized to the relation Rt ⊆ U×U
in the following way:

∀(u1, u2) ∈ U × U : u1Rtu2 ⇔ at(u1) Rat at(u2).

Let us notice that relation Rt orders in time the objects of the information
system from Example 2. Moreover, it is also worthwhile mentioning that for any
pair of objects (u1, u2) ∈ U?×U? (where U ⊆ U?) the relation Rt is also defined
(if we assume that attribute values on such objects can be received) (see Fig. 10).
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Fig. 13. The general scheme for construction of the concept approximation table
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Analogously, a relation ordering objects in time on the basis of attribute t
from the information system from Example 1 may be obtained.

Obviously, relations defined on the basis of the attributes of information
system A are not always related to the ordering objects in time. The example
below illustrates how structural relations may be defined on the basis of the
distance between objects.

Example 8. Let us consider an information system A = (U,A), whose object
set U = {u1, ..., un} is a finite set of vehicles going from a town T1 to a town
T2, whereas two attributes d and v belong to the attribute set A. The attribute
d represents the distance of a given vehicle from the town T2 while attribute v
represents the speed of a given vehicle. Value sets of these attributes are subsets
of the set of real numbers. Besides, the set Vd is a domain of relational structure
(Vd, {Rε

d}), where the relation Rε
d is defined in the following way:

∀(v1, v2) ∈ Vd × Vd : v1 Rε
d v2 ⇔ |v1 − v2| ≤ ε,

where ε is a fixed real number greater than 0.
Relation Rε

d may be in a natural way, generalized to the relation Rε ⊆ U ×U
in the following way:

∀(u1, u2) ∈ U × U : u1Rεu2 ⇔ d(u1) Rε
d d(u2).

As we see, a pair of vehicles belongs to relation Rε when objects are distant from
each other by no more than ε. Therefore, relation Rε we call the nearness relation
of vehicles and parameter ε is called the nearness parameter of vehicles. Relation
Rε may be defined for different values ε. That is why in a general case the number
of nearness relations is infinite. However, if it is assumed that parameter ε takes
the values from a finite set (e.g., ε = 1, 2, ..., 100), then the number of nearness
relations is finite. If Rε is a nearness relation defined in the set U × U (where
ε > 0), then set of vehicles U is a domain of the pure relational structure S =
(U, {Rε}). The exemplary concepts characterizing the properties of individual
vehicles may be high (average, low) speed of the vehicle or high (average, low)
distance from the town T2. These concepts are defined by an expert and may be
approximated on the basis of sensor attributes d and v. However, more complex
concepts may be defined which cannot be approximated with the help of these
attributes. The example of such a concept is vehicle driving in a traffic jam. The
traffic jam is defined by a number of vehicles blocking one another until they can
scarcely move (see, e.g., [72]). It is easy to notice that on the basis of observation
of the vehicle’s membership to the above mentioned sensor concepts (concerning
a single vehicle) and even observation of the value of sensor attributes for a
given vehicle, it is not possible to recognize whether the vehicle is driving in a
traffic jam or not. It is necessary to examine the neighborhood of a given vehicle
and more precisely to check whether there are other vehicles right after and
before the examined one. Therefore, to approximate the concept vehicle driving
in traffic jam we need a certain type of vehicle grouping which may be performed
with the help of the above mentioned relation Rε (see Example 9). Let us add
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that in recognition of the vehicle’s membership to the concept vehicle driving
in a traffic jam, it is also important that the speed of the examined vehicle and
the speed of the vehicles in its neighborhood are available. However, to simplify
the examples, in this subsection we assume that in recognition of the vehicle’s
membership to the concept vehicle driving in a traffic jam it is sufficient to
check the appearance of other vehicles in the neighborhood of a given vehicle
and considering the speed of these vehicles is not necessary.

Thus, for a given information system A = (U,A) representing positive and
negative examples of the lower ontology levels concepts there may be defined
a pure relational structure S = (U,R) (see label L3 from the Fig. 13). Next,
using the relations from family R a special language may be defined in which
patterns are defined which describe sets of objects (new concepts) for the needs
of approximation of the higher ontology level concepts (see label L4 from the
Fig. 13). The extracted sets of objects of a lower level are also usually nontrivial
relational structures, for the relations determined on the whole set of objects
of the lower ontology level in a natural way are defined on the extracted sets.
Time windows (see Section 6.4) or sequences of time windows (see Section 6.15)
may be such kind of relational structures. In modeling, we use pure relational
structures (without functions) over set of objects extracted from the initial re-
lational structures whose domains are sets of objects of lower ontology level.
The reason is that these structures are defined by extension of relations struc-
tures defined on information about objects of lower ontology level and even if
in the latter structures are defined functions then after the extension we obtain
relations over objects rather than functions.

Example 9. Let us consider an information system A = (U,A) from Example 8.
Let Rε be the nearness relation defined in the set U × U for the fixed ε > 0.
Then, the vehicle set U is the domain of relational structure S = (U, {Rε}) and
the relation Rε may be used to extract relational structures from the structure
S. In order to do this we define the family of subsets F (S) of the set U in the
following way: F (S) = {Nε(u1), ..., Nε(un)}, where:

Nε(ui) = {u ∈ U : uiRεu}, for i = 1, ..., n.

Let us notice that each set from family F (S) is connected with one of the vehicles
from set U . Therefore, each of the sets from family F (S) should be interpreted
as a set of vehicles which are distant from the established vehicle u no more than
by the established nearness parameter ε. In other words each such set is a vehicle
set which are in the neighborhood of a given vehicle, with the established radius
of the neighborhood area. For instance, if ε = 20 meters then vehicles u3, u4, u5,
u6, and u7 belong to the neighborhood of vehicle u5 (see Fig. 14). Finally, let
us notice that each set N ∈ F (S) is a domain of relational structure (N, {Rε}).
Thus, we obtain the family of relational structures extracted from structure S.
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Fig. 14. A vehicle and its neighborhood

The language in which, using the relational structures, we define formulas
for expressing extracted relational structures, is called a language for extracting
relational structures (ERS-language). The formulas of ERS-language determine
type of relational structures, i.e., relational structures which can appear in the
constructed information system. These new relational structures represent struc-
ture of more compound objects composed out of less compound ones. We call
them extracted relational structures (see label L5 from the Fig. 13). In this paper,
we use the three following ERS-languages:

1. the language assigned to extract trivial relational structures such as pre-
sented in Definition 3 and this method of relational structure extraction is
used in the case of construction of the concept approximation table using
stratifying classifiers (see Section 5.2),

2. the ETW -language assigned to extract relational structures which are time
windows (see Section 6.4),

3. the ESTW -language assigned to extract relational structures which are se-
quences of time windows (see Section 6.15).

However, the above mentioned process of extracting relational structures is
carried out in order to approximate the concept of the higher ontology level
with the help of lower ontology level concepts. Therefore, to extract relational
structures it is necessary to use information about membership of objects of the
lower level to the concepts from this level. Such information may be available
for any tested object thanks to the application of previously created classifiers
for the lower ontology level concepts (see Section 6.4 and Section 6.15).

For relational structures extracted using ERS-language features (properties,
attributes) may be defined using a specially constructed language, that we call
a language for definnig features of relational structures (see label L6 from the
Fig. 13). The FRS-language leads to an information system whose objects are
extracted relational structures and the attributes are the features of these struc-
tures. Such system will be called an information system of extracted relational
structures (RS-information system) (see label L7 from the Fig. 13). However,
from the point of view of domain knowledge, not all objects (relational struc-
tures) extracted using ERS-language are appropriate to approximation of a
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given concept of the higher level of ontology. For instance, if we approximate the
concept of safe overtaking, it is reasonable to use objects representing vehicles
examples that are in the process of overtaking maneuver, for using objects repre-
senting vehicles which are not in the process of an overtaking maneuver, nothing
help to recognize the pairs of vehicles which take part in a safe overtaking with
the pairs of vehicles which overtake unsafely.

For the above reason, that is, to eliminate objects which are unreal or are un-
reasonable, there are defined the so-called constraints which are formulas defined
on the basis of object features used to create attributes from the RS-system. The
constraints determine which objects may be used in order to obtain a concept
example from the higher level and which cannot be used (see label L6 from the
Fig. 13). In this paper constraints are represented by a constraint relation and
are defined as a formula of the language GDL (see Definition 5) on the basis of
attributes appearing in the system RS-system.

The example below illustrates how RS-information systems may be defined.

Example 10. Let us consider an information system A = (U,A), a relational
structure S = (U, {Rε}) and a family F (S) extracted from relational structure S
(see Example 9). We construct an information system F = (F (S), A) such that
A = {af , ab}, where for any u = Nε(u) ∈ F (S) a value af (u) is the number of
vehicles in the neighborhood Nε(u) going in the right lane before vehicle u and
ab(u) is the number of vehicles in the neighborhood Nε(u) going in the right lane
behind vehicle u. Let us notice that attributes of set A were chosen in such a
way that the objects from information system F are relevant to approximate the
concept vehicle driving in a traffic jam. For example, if ε = 20 meters and for
the object u ∈ F (S) values af (u) = 2 and ab(u) = 2, then vehicle u is driving in
a traffic jam (see vehicle u4 from Fig. 15). Whereas, if af (u) = 0 and ab(u) = 0,
then vehicle u is not driving in a traffic jam (see vehicle u7 from Fig. 15). For
the system F we define the following formula:

φ = ((af > 0) ∨ (ab > 0)) ∈ GDL(F).

It is easy to notice that formula φ is not satisfied only by neighborhoods related
to vehicles which definitely not driving in a traffic jam. Therefore, in terms of
neighborhood classification to the concept driving in a traffic jam these neighbor-
hoods may be called trivial ones. Hence, formula φ may be treated as a constraint
formula which is used to eliminate the above mentioned trivial neighborhoods
from F. After such reduction we obtain an RS-information system A = (U, A),
where

U = {u ∈ F (S) : u |=GDL(F) φ}.

Let us notice that the definition of attributes of extracted relational struc-
tures leads to granulation of relational structures. For example, we obtain gran-
ules of relational structures defined by the indiscernibility relation defined by
new attributes.
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Fig. 15. Two vehicle neighborhoods

A question arises, how to construct languages defining features of relational
structures, particularly when it comes to approximation of spatio-temporal con-
cepts, that is, those whose recognition requires following the changes of complex
objects over time. One of more developed languages of this type is a temporal
logic language. In literature there are many systems of temporal logics defined
which offer many useful mechanisms (see, e.g., [51, 63, 85]). Therefore, in this
paper, we use temporal logics to define our own languages describing features
of relational structures. Especially interesting for us are the elements appearing
in definitions of temporal logics of linear time (e.g., Linear Temporal Logic) and
branching time logic (e.g., Branching Temporal Logic).

Temporal logic of linear time assumes that time has a linear nature, that is,
one without branches. In other words, it describes only one world in which each
two events are sequentially ordered. In linear time logics there are the following
four temporal operators introduced: ¤, ♦, © and U . Generally speaking, these
operators enable us to determine the satisfiability of temporal formulas in a
certain time period. Operator ¤ (often also marked as G) determines the satisfi-
ability of a formula at all instants (states) of the time period under observation.
Operator ♦ (often marked as F) determines the satisfiability of a formula at least
at one instant (state) of the time period under observation. Operator © (often
marked as X) determines the satisfiability of a formula at an instant (state) right
after the instant of reference. Finally, operator U (often marked as U) determines
the satisfiability of a formula until another formula is satisfied. Therefore, linear
time temporal logics may be used to express object properties which aggregate
behavior of complex objects observed over a certain period of linear time, e.g.,
features of time windows or features of temporal paths in behavioral graphs (see
Section 6.6 and Section 6.17).

Temporal logic of branching time, however, assumes that time has a branch-
ing nature, that is, at a given instant it may branch itself into parallel worlds
representing possible various future states. In branching time logics there are
two additional path operators A and E introduced. They enable us to determine
the satisfiability of temporal formulas for various variants of the future. The first
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operator means that the temporal formula, before which the operator occurs, is
satisfied for all variants of the future. The second, however, means the formula
is satisfied for a certain future. Path operators combined with the three G, F
and X temporal logics operators give six possible combinations: AG, AF, AX, EG,
EF and EX. These combinations give opportunities to describe multi-variant, ex-
tended over time behaviors. Therefore, temporal logics of branching time may be
used to express such complex object properties that aggregate multi-variant be-
haviors of objects changing over time (e.g., features of clusters of time windows
or features of clusters of temporal paths in behavioral graphs) (see Section 6.8
and Section 6.19).

We assume, that in extracted relational structures the time flow has a linear
character. Therefore, languages using elements of temporal logics with linear
time are applied to define their features. In this paper, we use the three following
languages defining features of extracted relational structure:

1. the language assigned to define features of trivial relational structure such
as in Definition 3 - this method of defining features of relational structures
is applied together with extraction of trivial relational structure (see Defini-
tion 3) and is based on the usage of features of objects taken from information
system as features of relational structures after extraction (objects in a given
information system and elements of domains of extracted from this system
relational structures are the same) (see Section 5.2),

2. the language FTW using elements of temporal logic language and is as-
signed to define relational structure properties, which are time windows (see
Section 6.6),

3. the language FTP also using elements of temporal logic language, assigned
to define relational structure properties, which are paths in behavioral graphs
(see Section 6.17).

However, objects of RS-information systems are often not suitable to use
their properties for approximating concepts of the higher ontology level. It hap-
pens this way because the number of these objects is too large and their descrip-
tions are too detailed. Hence, if they are applied to approximate the concept
from the higher ontology level, the coverage of the constructed classifier would
be too little, that is, the classifier could classify too small number of tested
objects. Apart from that, there would appear a problem of computational com-
plexity which means that due to the large number of objects of such information
system, the number of objects in the concept approximation table for the struc-
tured objects (see further part of this subsection) would be too large in order to
construct a classifier effectively.

That is why, a clustering such objects is applied leading to obtaining a family
of object clusters (see label L8 from the Fig. 13).

The example below illustrates in a very simple way how it is possible to define
clusters of relational structures.

Example 11. Let A = (U, A) be an RS-information system from Example 10.
We are going to define clusters of the vehicles’ neighborhoods. For this purpose
we propose a relation Rσ ⊆ U × U , that is defined in the following way:
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∀(u1,u2)∈U×U u1Rσu2 ⇔ |af (u1)− af (u2)| ≤ σ ∧ |ab(u1)− ab(u2)| ≤ σ,

where σ is a fixed integer number greater than 0. As we see, to relation Rσ belong
such pairs of vehicle neighborhoods which differ only slightly (no more than by
σ) in terms of attribute values af and ab. Therefore, relation Rσ is called the
nearness relation of vehicle neighborhoods and parameter σ is called the nearness
parameter of vehicle neighborhoods. The relation Rσ may be defined for different
values σ. That is why in a general case the number of such nearness relations is
infinite. However, if it is assumed that parameter σ takes the values from a finite
set (e.g., σ = 1, 2, ..., 10), then the number of nearness relations is finite. Let Rσ

be nearness relation of neighborhoods determined for the established σ > 0. Then
the set of neighborhood of vehicles U is the domain of a pure relational structure
S = (U, {Rσ}). The relational structure S is the starting point to extract clusters
of vehicle neighborhoods. In order to do this we define the family of subsets F (S)
of the set U in the following way: F (S) = {Nσ(u1), ..., Nσ(un)},
where:

Nσ(ui) = {u ∈ U : uiRσu}, for i = 1, ..., n.

Let us notice that each of the set from family F (S) is connected with one ve-
hicle neighborhood from the set U . For any u ∈ U the set Nσ(u) will be also
denoted by u, for short. Moreover, these sets are interpreted as neighborhood
clusters which are distant from the central neighborhood in the cluster no more
than the established nearness parameter. In other words, each such family is
a vehicles’ neighborhood cluster which are close to a given neighborhood, with
their established nearness parameter. For instance, if ε = 20 meters and σ = 1,
then neighborhoods Nε(u3), Nε(u5) and obviously neighborhood Nε(u4) belong
to the neighborhood cluster Nσ(u4) (see Fig. 16), whereas the neighborhood
Nε(u7) does not belong to this neighborhood cluster. Finally, let us notice that
each set X ∈ F (S) is a domain of relational structure (X, {Rσ}). Hence, we
obtain the family of relational structures extracted from structure S.

Grouping of objects in system RS-system may be performed using chosen
by an expert language of extraction of clusters of relational structures, which
in this case is called a language for extracting clusters of relational structures
(ECRS-language). The formulas of ECRS-language express families of clus-
ters of relational structures from the input RS-information systems (see label
L9 from the Fig. 13). Such formulas can be treated as a type of clusters of
relational structures which will create objects in a new information system. In
ECRS-language we may define a family of patterns corresponding to a family
of expected clusters. In this paper, the two following ECRS-languages are used:

1. the language ECTW assigned to define relational structure clusters which
are time window families (see Section 6.8),
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Fig. 16. Four vehicle neighborhoods

2. the language ECTP assigned to define relational structure clusters which
are path families in complex object behavioral graphs (see Section 6.19).

For clusters of relational structures extracted in such a way features may
be defined using a specially constructed language, that we call a language for
defining features of clusters of relational structures (FCRS-language) (see label
L10 from the Fig. 13). A formula from this language is satisfied (or unsatisfied)
on a given clusters of relational structures if and only if it is satisfied for all
relational structures from this clusters. The FCRS-language leads to an infor-
mation system whose objects are extracted clusters of relational structures and
the attributes are the features of these clusters (see label L11 from the Fig. 13).
Such information system we call an information system of clusters of relational
structures (CRS-information system).

Similarly to the case of the relational structures extracted using ERS-language,
not all objects (relational structures) extracted using ECRS-language are ap-
propriate to approximation of a given concept of the higher level of ontology.
Therefore in this case we also define constraints which are formulas defined on
the basis of object features used to create attributes from the CRS-information
system. Such constraints determine which objects may be used in order to obtain
a concept example from the higher level and which cannot be used.

The example below illustrates how CRS-information systems may be defined.

Example 12. Let F (S) be the family extracted from relational structure S (see
Example 11). One can construct an information system F = (F (S), A), where
A = {af , ab} and for any u ∈ F (S) values of attributes af and ab are computed
as the arithmetical average of values of attributes af and ab for neighborhoods
belonging to the cluster represented by u. The attributes of set A were chosen
in such a way that the objects from set U are appropriate for approximation of
the concept vehicle driving in a traffic jam. For example, if ε = 20 meters, σ = 1
and values af (u) and ab(u) are close to 2 then the neighborhoods from cluster
represented by object u contain vehicles which definitely drive in a traffic jam.
Whereas, if af (u) and ab(u) are close to 0 then the neighborhoods from cluster
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represented by object u contain vehicles which definitely do not drive in a traffic
jam. For the system F we define the following formula:

Φ = ((af > 0.5) ∨ (ab > 0.5)) ∈ GDL(F).

It is easy to notice that formula Φ is not satisfied only by such clusters to which
belong vehicle neighborhoods definitely not driving in a traffic jam. Therefore, in
terms of cluster classification to the concept driving in a traffic jam these clusters
may be called trivial ones. Hence, formula Φ may be treated as a constraint
formula which is used to eliminate the above mentioned trivial clusters from F.

After such reduction we obtain an CRS-information system A = (U, A),
where

U = {u ∈ F (S) : u |=
GDL(F)

Φ }.

Unlike the single relational structures in relational structure clusters the time
flow has a branching character because in various elements of a given cluster
we observe various variants of dynamically changing reality. Therefore, to de-
fine relational structure cluster properties we use elements of temporal logics
of branching time language. In this paper, we use the two following languages
defining cluster properties:

1. the language FCTW using elements of temporal logics language and as-
signed to define cluster features which are families of time windows (see
Section 6.8),

2. the language FCTP also using elements of temporal logics language assigned
to define cluster families which are families of temporal paths in behavioral
graphs, that is, sub-graphs of behavioral graphs (see Section 6.19).

Finally, we assume that to each object, acceptable by constraints, an expert
adds a decision value determining whether a given object belongs to a higher
level approximated concept or not (see label L12 from the Fig. 13). After adding
the decision attribute we obtain the concept approximation table for a concept
from the higher ontology level (see label L13 from the Fig. 13).

The notion of concept approximation table concerning a concept from the
higher ontology level for an unstructured complex object may be generalized in
the case of concept approximation for structured objects (that is, consisting of
parts).

Let us assume that the concept is defined for structured objects of type
T which consist of parts being complex objects of types T1,...,Tk. In Fig. 17
we illustrate the general scheme for construction of the concept approximation
table for such structured objects. We see that in order to construct a table for
approximating a concept defined for structured objects of type T , CRS-systems
are constructed for all types of structured object parts, that is, types T1,...,Tk

(see labels L3−1,..., L3−k from the Fig. 17). Next, these systems are joined
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Fig. 17. The general scheme for construction of the concept approximation table
for structured objects
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in order to obtain a table of approximating concept of the higher ontology level
determined for structured objects. Objects of this table are obtained by arranging
(linking) all possible objects of linked information systems (see label L4 from
the Fig. 17). From the mathematical point of view such an arrangement is a
Cartesian product of sets of objects of linked information systems. However,
from the point of view of domain knowledge not all objects links belonging to
such a Cartesian product are possible and reasonable (see [33, 269–271]). For
instance, if we approximate the concept of overtaking, it is reasonable to arrange
objects of such pairs of vehicles that drive close to each other. For the above
reason, there are defined constraints which are formulas defined on the basis of
properties of arranged objects. The constraints determine which objects may be
arranged in order to obtain a concept example from the higher level and which
cannot be arranged. Additionally, we assume that to each object arrangement,
acceptable by constraints, an expert adds a decision value determining whether
a given arrangement belongs to a higher level approximated concept or not (see
label L4 from the Fig. 17).

A table constructed in such a way is to serve a concept approximation deter-
mined on a set of structured objects (see label L5 from the Fig. 17). However,
it frequently happens that in order to describe a structured object, apart from
describing all parts of this object, a relation between the parts of this object
should be described. Therefore, in constructing a table of concept approxima-
tion for a structured object, there is constructed an additional CRS-information
system whose attributes entirely describe the whole structured object in terms
of relations between the parts of this object (see label L3−c from the Fig. 17).
In approximation of the object concerning structured objects, this system is ar-
ranged together with other CRS-information systems constructed for individual
parts of the structured objects (see label L4 from the Fig. 17).

Similarly to the case of the concept approximation table for unstructured
objects, the constraint relation is usually defined as a formula in the language
GDL (see Definition 5) on the basis of attributes appearing in the obtained
table. However, constraint relation may also be approximated using classifiers.
In such a case providing examples of objects belonging and not belonging to
constraint relation is required (see, e.g., [33]).

The construction of a specific approximation table of a higher ontology level
concept requires defining all elements appearing in Fig. 13 and 17. A fundamental
problem connected with construction of an approximation table of the higher
ontology level concept is, therefore, the choice of four appropriate languages
used during its construction. The first language serves the purpose of defining
patterns in a set of lower ontology level concept examples which enable the
relational structure extraction. The second one enables defining the features of
these structures. The third one enables to define relational structure clusters
and finally the fourth one the properties of these clusters. All these languages
must be defined in such a way as to make the properties of created relational
structure clusters useful on a higher ontology level for approximation of the
concept occurring there. Moreover, in the case when the approximated concept
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concerns structured objects each of the parts of this type of objects may require
another four of the languages mentioned above.

However, the definition of these languages depends on semantical difference
between concepts from both ontology levels. In this paper, we examine the follow-
ing three situations in which the above four languages are defined in a completely
different way (see Fig. 18).
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Fig. 18. Three cases of complex concepts approximation in ontology

1. The approximated concept C of the higher ontology level is a spatial concept
(it does not require observing changes of objects over time) and it is defined
on a set of the same objects as lower ontology level concepts (see Case 1 from
Fig. 18). On the lower level we have a concept family: {C1, ..., Cl}, that are
also spatial concept. Apart from that the concepts {C1, ..., Cl} are defined
for unstructured objects without following their changes over time. That is
why these concepts are defined on the basis of an object state observation
at a single time point or time period established identically for all concepts.
For example, the concept C and the concepts C1,...,Cl may concern the
situation of the same vehicle while concept C may be the concept of Safe
overtaking. On the other hand, to the family of concepts C1,...,Cl may belong
such concepts as: Safe distance from the opposite vehicle during overtaking,
Possibility of going back to the right lane and Possibility of safe stopping
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before the crossroads. The methods of approximation of the concept C for
this case are described in Section 5.

2. The concept C under approximation is a spatio-temporal one (it requires
observing object changes over time) and it is defined on the set of the same
objects as the lower ontology level concepts (see Case 2 from Fig. 18).
On the lower level we have a concept family: {C1, ..., Cl}, that are spatial
concept. The concept C concerns object property defined in a longer time
period than the concepts from the family {C1, ..., Cl}. This case concerns
a situation when following an unstructured object in order to capture its
behavior described by the concept C, we have to observe it longer than
it is required to capture behaviors described by concepts from the family
{C1, ..., Cl}. For example, concepts C1,...,Cl may concern simple behaviors
of a vehicle such as acceleration, deceleration, moving towards the left lane,
while the concept C may be a more complex concept: accelerating in the
right lane. Let us notice that determining whether a vehicle accelerates in
the right lane requires its observation for some time which is called a time
window. However, determining whether a vehicle increased its speed requires
only the vehicle’s speed registration at two neighboring instants. Such a case
of the concept C approximation is described in Section 6.

3. The approximated concept C is a spatio-temporal one (it requires observing
object changes over time) and it is defined on a set of structured objects,
while concepts from the family {C1, ..., Cl} are determined on the set of parts
of these objects; and at the same time the concept C concerns the structured
object’s behavior over a longer period of time than concepts from the family
{C1, ..., Cl} (see Case 3 from Fig. 18). This case concerns a situation when
following a structured object in order to capture its behavior described by
the concept C, we have to observe this object longer than it is required to
capture behaviors of single part of this object described by concepts from
the family {C1, ..., Cl}. For example, concepts from the family {C1, ..., Cl}
may concern complex behaviors of a single vehicle such as acceleration in
the right lane, acceleration and changing lanes from right to left, decelerating
in the left lane. However, the concept C may be even more complex concept
describing a behavior of a group of two vehicles (overtaking and overtaken)
over a certain period of time, for example the overtaking vehicle changes
lanes from the right to left one while the overtaken vehicle drives in the
right lane. Let us notice that the behavior described by the concept C is an
essential fragment of overtaking maneuver and determining if the group of
two vehicles under observation behaved exactly that way requires observation
for a certain time of behavior sequence of vehicles taking part in maneuvers
such as accelerating in the right lane, accelerating and changing lanes from
right to left, maintaining a stable speed in the right lane. This most complex
case of the approximation of the concept C also is described in Section 6.
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5 Approximating Spatial Concepts from Ontology

In the present subsection, we describe the case of approximating the concept C
from the higher ontology level using concepts C1,...,Ck from the lower ontology
level when approximated concept C is defined on the set of the same objects
as concepts C1,...,Ck. Moreover, both concept C and concepts C1,...,Ck con-
cern object properties without observing their changes over time. In this paper
such concepts are called spatial concepts. The example below describes a classic
situation of this type resulting from an ontology obtained from a road traffic
simulator (see Appendix A).

Example 13. Let us consider a situation when all ontology concepts concern the
same type of objects, that is, vehicles. We deal with this type of situation in the
case of ontology from Fig. 7. To each concept of this ontology there belong vehi-
cles satisfying a specific condition expressed in a natural language. For example,
to the concept of Safe overtaking there belong all vehicles which overtake safely,
whereas to the concept of Possibility of safe stopping before the crossroads these
vehicles whose speed is low enough to safely stop before the crossroads. The con-
cepts of the lowest ontology level, that is, Safe distance from the opposite vehicle
during overtaking, Possibility of driving back to the right lane, Possibility of safe
stopping before the crossroads, Safe distance from the front vehicle, Forcing the
right of way and Safe distance from the front vehicle are sensor concepts, that is,
they may be approximated directly using sensor data. For example, the concept
of Possibility of safe stopping before the crossroads may be approximated using
such sensor attributes as the speed of the vehicle, the acceleration of the vehicle,
the distance from the crossroads, visibility and humidity. However, concepts of
the higher ontology level, that is, Safe overtaking and Safe driving should be
approximated using concepts from the lower ontology level. For example, the
concept of Safe overtaking may be approximated using the three following con-
cepts: Safe distance from the opposite vehicle during overtaking, Possibility of
going back to the right lane and Possibility of safe stopping before the crossroads.

In order to approximate the higher ontology level concept (for example, the
concept of Safe overtaking in the above example), an approximation table should
be constructed for this concept according to Fig. 13. In order to do this a special
language PEC is necessary, whose definition we provide in the next subsection.

5.1 Language of Patterns Extracted from a Classifier

If the approximation of the lower level ontology concepts is performed, then for
each of these concepts we have at our disposal a classifier which is an algorithm
returning for any tested object (that is, relational structure of the lower ontol-
ogy level) the information about whether this object belongs to the concept or
not. This type of information coming from all classifiers approximating lower
ontology level concepts may serve the construction of binary attributes which
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describe crucial properties of the object of the higher ontology level. However,
it should not be expected that in a general case the membership of objects to
the concept of lower ontology level determines the membership of objects to the
concept of higher ontology level. For example, if we assume that the concept of
safe overtaking depends on the three following concepts: safe distance from the
opposite vehicle during overtaking, possibility of driving back to the right lane
and possibility of safe stopping before the crossroads (see Fig. 7), then it is hard
to expect that a given vehicle overtakes safely only when it belongs to these three
concepts. On the other hand, it is hard to expect that if the vehicle does not be-
long to one of these three concepts, then it definitely does not overtake safely. For
example, if the distance from the oncoming vehicle is not safe, that is, a head-on
collision of the overtaking and oncoming vehicles is possible, then it cannot be
determined that the overtaking is safe. However, there are probably situations
when the precise membership of the vehicle to the three concepts above cannot
be acknowledged, but the expert will still claim in the natural language that the
overtaking is safe, or that the overtaking is almost safe or that the overtaking is
safe to some degree. Therefore, in this paper to construct attributes describing
object properties from the lower ontology level, we propose stratifying classifiers
which must certainly be constructed previously for lower ontology level concepts.
This type of attributes inform in a more detailed way about the membership of
objects to the lower ontology level concepts and because of that they are more
useful to approximate higher level concepts.

Let us, now, define a language of patterns extracted from a classifier (PEC)
which are used to describe object properties which are positive and negative
examples of ontology concepts.

Definition 12. (A language of patterns extracted from a classifier)
Let us assume that:

– A = (U,A, d) is a decision table, whose objects are relational structures and
examples (positive and negative) for some concept C, described by a binary
attribute d,

– µE
C is a stratifying classifier for the concept C, which classifies objects from U

to l-layers, denoted be labels from the set E = {e1, ..., el}, where the following
three conditions are satisfied (see also Section 3.1):
1. layer e1 includes objects which, according to an expert, certainly do not

belong to concept C (so they belong to a lower approximation of its com-
plement),

2. for every two layers ei, ej (where i < j), layer ei includes objects which,
according to an expert, belong to concept C with a degree of certainty
lower the degree of certainly of membership of objects of ej in U ,

3. layer el includes objects which, according to an expert, certainly belong
to concept C, viz., to its lower approximation.

1. The language of patterns extracted from a classifier µE
C (denoted by PEC(µE

C)
or PEC-language, when µE

C is fixed) is defined in the following way:
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• the set ALPEC(µE
C) = {µ,∈,¬,∧,∨} ∪ (2E \ ∅) is an alphabet of the

language PEC(µE
C),

• expressions of the form (µ ∈ B), for any B ⊆ E, are atomic formulas
of the language PEC(µE

C).
2. The semantics of atomic formulas from the language PEC(µE

C) is defined
for any B ⊆ E in the following way:

|µ ∈ B|PEC(µE
C) =

{
u ∈ U : µE

C(u) ∈ B
}

.

The issue of defining atomic formulas themselves (expressions of type µ ∈ B,
where B ⊆ E) belonging to the sets of formulas of the language mentioned above
also requires an explanation. Because concept layers from the set E are ordered,
then the formulas of the form µ ∈ B are defined with the help of relation =, 6=,
<, ≤, > and ≥. For example, the µ = e2 formula describes these objects from
the set U which the stratifying classifier µE

C classifies to the layer marked by e2,
however, the formula of the form µ ≥ e3 describes these objects from the set U
which the stratifying classifier µE

C classifies to the e3 layer or higher, that is, to
one of the e3, e4, ..., el layers.

If it is known which stratifying classifier is used to define the language PEC
for a specific concept C and if the set of layers E of the approximated concept
is known, then we often use simplification of pattern description consisting in
replacing (in formulas of the language PEC) the µ symbol with the name of
the approximated concept, which enable to simplify the records in pattern pre-
sentation for several concepts at the same time. For example, in approximation
of concept C using the stratifying classifier µE

C (where E = {e1, ..., el}), pattern
(µ ≥ e3) are recorded as C ≥ e3.

Because the language PEC is the language for construction of the structural
relation properties, then each formula of that language in a given information
system can be called a pattern. Some of these patterns are of great significance in
practical applications. Therefore, we give them special names. The first pattern of
this type is the so-called concept layer pattern which describes objects belonging
to one of the concept layers.

Definition 13. Let C be a concept and µE
C be a stratifying classifier for the

concept C, which classifies objects to l-layers, denoted be labels from the set
E = {e1, ..., el} (see conditions from Definition 12). Any pattern of the form
(µ = ei), where i ∈ {1, ..., l}, is called a layer pattern of concept C.

Each layer pattern may be treated as a simple classifier which can classify
objects matching this pattern. Thus, it is possible to select objects which belong
to one of the concept layers. However, frequently in practice such accuracy of
indicating one layer for a tested object is often not necessary. For example, we
may be interested in patterns which describe such layers which certainly do not
precede the established layer. These patterns correspond to the situation when
we wish to recognize such concepts that belong to the concept with certainty
at least equal to the previously established certainty level. For example, if we
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consider the concept of safe overtaking which has six linearly organized layers
“certainly NO”, “rather NO”, “possibly NO”, “possibly YES”, “rather YES”
and “certainly YES”, then the µ ≥ “possibly YES” pattern describes such ve-
hicles that perhaps overtake safely, rather overtake safely and certainly overtake
safely. Hence, this pattern may be useful as a classifier which is not too certain.
It is easy to change it to µ ≥ “rather YES” by this increasing the certainty of
its classification.

Due to practical applications of the above patterns we use a special term to
call them, which is given in the definition below.

Definition 14. Let C be a concept and µE
C be a stratifying classifier for the

concept C, which classifies objects to l-layers, denoted be labels from the set
E = {e1, ..., el} (see Definition 12). Any pattern of the form (µ ≥ ei), where
i ∈ {1, ..., l}, is called a production pattern of concept C.

The term from the above definition results from the fact that these types of
patterns find application in production rule construction (see Section 5.3).

5.2 Concept Approximation Table Using Stratifying Classifiers

Currently, we present a definition of the approximation table of the higher on-
tology level concept with the help of stratifying classifiers.

Definition 15. (A concept approximation table using stratifying classifiers)
Let us assume that:

– A = (U,A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck, where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U,Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– Φi = {φ1
i , ..., φ

li
i } is a family of patterns defined by formulas from the lan-

guage PEC(µEi

Ci
), which can be used to define new attributes (features) for

objects from the set U , for i = 1..., k,

– PPEC = (U,Φ, |=PEC) is a property system, where Φ =
k⋃

i=1

Φi and the satis-

fiability relation |=PEC is defined in the following way:

∀(u, φ) ∈ U × Φ : u |=PEC φ ⇔

u |=
PEC(µ

Ei
Ci

)
φ, for i ∈ {1, .., k} such that φ ∈ Φi,
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– AΦ = (U,AΦ) is an information system defined be the property system PPEC ,
– RC ⊆ U is a relation of constraints defined by a formula Ψ ∈ GDL(AΦ)

that is ∀u∈U u ∈ RC ⇔ u |=GDL(AΦ) Ψ .

A concept approximation table using stratifying classifiers for the concept C rel-
atively to concepts C1,...,Ck is a decision table AC = (UC , AC , dC), where:

– UC = RC ,
– AC = AΦ,
– the attribute dC describes membership of objects from the set U to the concept

C.

According to the above definition, the conditional attributes of concept ap-
proximation table are constructed on the basis of stratifying classifiers µE1

C1
, ..., µEk

Ck

which were generated for concepts of the lower ontology level C1,...,Ck and for
layer sets E1,...,Ek. It ought to be stressed, however, that the number of layers
and the layout of layers in sets E1,...,Ek should be chosen in such a way as to
serve effective approximation of complex concept C. In order to do this the layers
are chosen by an expert on the basis of the domain knowledge or are obtained
on the basis of suitably designed layering heuristics (see Section 3).

It is easy to notice that the table of concept approximation from ontology
using stratifying classifiers defined above is a special case of a concept approxi-
mation table mentioned in Section 4.10.

Let us now go back to Example 7 which concerned approximation of the
concept of Safe overtaking.

Example 14. The continuation of Example 13
For concept Safe overtaking approximation we wish to construct an approxima-
tion table according to Definition 15. First, stratifying classifiers for concepts
Safe distance from the opposite vehicle during overtaking (CSDOV ), Possibility
of going back to the right lane (CPGBR) and Possibility of safe stopping before
the crossroads (CSSBC) should be constructed. Next, conditional attributes are
constructed which are defined as patterns in the language PEC, individually for
each of the three concepts. The choice of appropriate patterns takes place on the
basis of domain knowledge. In the simplest case they may be layer patterns for
all layers of concepts CSDOV , CPGBR and CSSBC . Next, on the basis of domain
knowledge a relation of constraints is established and used to arrange an approx-
imation table for the Safe overtaking concept, leaving only objects which belong
to this relation. Finally, also on the basis of domain knowledge values of decision
attribute from the Safe overtaking concept approximation table is established.

The concept approximation table using stratifying classifiers may be used for
building a classifier which ensures approximation of this concept. The approx-
imation may take place using classical classifiers (see Section 2) or stratifying
classifiers (see Section 3).
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Slightly similar approaches have been successfully applied to approximate
concepts in different ontologies (see, e.g., [24, 188–191]). They have also been
applied in ontology from Fig. 7 (see [24, 188]) obtained from the road simulator
(see Appendix A). However, in this paper we are more interested in other meth-
ods of classifier construction using language PEC which use production rules,
productions and approximate reasoning schemes. These methods are described
in the next few subsections.

5.3 Production Rules

The production rule (see, e.g., [28, 31, 74, 143, 144, 235–237, 239]) is a kind of
decision rule which is constructed on two adjacent levels of ontology. In the
predecessor of this rule there are patterns for the concepts from the lower level of
ontology while in the successor the pattern for one concept from the higher level
of ontology (connected by relationships with concepts from the rule predecessor).

Definition 16. (A production rule)
Let us assume that:

– A = (U,A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck, where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U,Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– AC = (UC , AC) is a concept approximation table for the concept C using
stratifying classifiers µEi

Ci
, for i = 1, ..., k,

– µE
C is a stratifying classifier for the concept C, which classifies objects from

the set UC to layers, denoted be labels from the set E.

1. If pi ∈ PEC(µEi

Ci
) is a production pattern for the concept Ci (for i = 1, ..., k)

and p ∈ PEC(µE
C) is a production pattern for the concept C then any formula

of the form:

p1 ∧ ... ∧ pk ⇒ p (6)

is called a production rule for the concept C relatively to concepts C1, ..., Ck

if and only if the following conditions are satisfied:

(a) exists at least one object u ∈ UC such that:

u |=
PEC(µ

Ei
Ci

)
pi for i = 1, ..., k,
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(b) for any object u ∈ UC :

u |=
PEC(µ

E1
C1

)
p1 ∧ ... ∧ u |=

PEC(µ
Ek
Ck

)
pk ⇒ u |=PEC(µE

C) p

2. The first part of production rule (i.e., p1 ∧ ...∧ pk) is called a predecessor of
production rule, whilst the second part of production rule (i.e., p) is called a
successor of production rule.

3. The concept from the upper level of production rule (from successor of rule)
is called a target concept of production rule, whilst the concepts from the
lower level of production rule (from predecessor of rule) are called source
concepts of production rule.

Below, we present an example of production rule.

Example 15. We consider the concept C which depends on concepts C1 and
C2 (in some ontology). Besides, concepts C, C1 and C2 have six linearly orga-
nized layers “certainly NO”, “rather NO”, “possibly NO”, “possibly YES”,
“rather YES” and “certainly YES”. In Fig. 19 we present an example of pro-
duction rule for concepts C1, C2 and C. This production rule has the following
interpretation: if inclusion degree to a concept C1 is at least “possibly YES”
and to concept C2 at least “rather YES” then the inclusion degree to a concept
C is at least “rather YES”.

 

C2 ≥ ”rather YES” C1  ≥ ”possibly YES” 

C ≥ ”rather YES” 

Fig. 19. The example of production rule

A rule constructed in such a way may serve as a simple classifier enabling
the classification of objects matching the patterns from the rule predecessor into
the pattern from the rule successor. The tested object may be classified by a
production rule if it matches all patterns from the production rule predecessor.
Then the production rule classifies a tested object to the target (conclusion)
pattern.

For example, the object u1 from Fig. 20 is classified by production rule from
Fig. 19 because it matches both patterns from the left hand side of the production
rule whereas, the object u2 from Fig. 20 is not classified by production rule
because it does not match the second source pattern of production rule (the
value of attribute C2 is less than “rather YES”).

The domain of a given production rule is a set of all objects matching all
patterns from the predecessor of this rule.
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C1 ≥ ”possibly YES”

C ≥ ”rather YES”

C2 ≥ ”rather YES”

”rather YES””certainly YES”

C2C1
C ≥ ”rather YES”

”possibly YES””rather YES”

C2C1
C ≥ ”rather YES”→/

→u1

u2

Fig. 20. Classifying tested objects by single production rule

5.4 Algorithm for Production Rules Inducing

Production rules can be extracted from data using domain knowledge. In this
section we present an exemplary algorithm for the production rule inducing.
The basic structure of this algorithm’s data is a special table called a layer table
which we define for the approximated concept in ontology.

Definition 17. (A layer table)
Let us assume that:

– A = (U,A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck, where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,

– Ti = (U,Ai, dCi) is a decision table constructed for approximation of the
concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– AC = (UC , AC) is a concept approximation table for the concept C using
stratifying classifiers µEi

Ci
, for i = 1, ..., k,

– µE
C is a stratifying classifier for the concept C, which classifies objects from

the set UC to layers, denoted be labels from the set E.

A layer table for the concept C relatively to concepts C1,...,Ck is a decision table
LTC = (U,A, d), where:

– U = UC

112



possibly NOcertainly NOpossibly YES

certainly YESrather YEScertainly YES

certainly NOpossibly NOcertainly NO 

rather YESrather YESpossibly YES

rather NOpossibly NOpossibly YES

possibly YESpossibly NOpossibly YES

rather YEScertainly YESrather YES

certainly NOcertainly NOcertainly NO

certainly YEScertainly YEScertainly YES

aCaC2aC1

C1 ≥ possibly YES

C≥ rather YES

C2 ≥ rather YES

certainly NO < rather NO < possibly NO < possibly YES < rather YES < certainly YES

The target pattern  of 
production rule

The source patterns  of 
production rule

Fig. 21. The illustration of production rule extracting

– A = {aC1 , ..., aCk
} ∪ {aC}, where for any object u ∈ U attributes from the

set A are defined in the following way:

• aCi(u) = µEi

Ci
(u) for i = 1, ..., k,

• aC(u) = µE
C(u).

The layer table for a given concept C, which depends on concepts C1, ..., Ck

in ontology, stores layer labels of objects belonging to the AC table.

Example 16. Let us assume that in a certain ontology the concept C depends
on concepts C1 and C2. Moreover, each of these six concepts has six linearly
organized layers: “certainly NO”, “rather NO”, “possibly NO”, “possibly YES”,
“rather YES” and “certainly YES”. The Fig. 21 presents a sample table of layers
for these concepts.

Now, an algorithm of production rule searching may be presented (see Al-
gorithm 5.1). It works on the basis of a layer table and as a parameter requires
providing a layer which occurs in the successor of the production rule.

In Fig. 21 we illustrate the process of extracting production rule for concept C
and for the approximation layer “rather YES” of concept C. Is is easy to see that
if from the table LTC we select all objects satisfying aC = “rather YES”, then
for selected objects minimal value of the attribute aC1 is equal to “possibly YES”
and minimal value of the attribute aC2 is equal to “rather YES”. Hence, we
obtain the production rule:

(C1 ≥ “possibly YES”) ∧ (C2 ≥ “rather YES”) ⇒ (C ≥ “rather YES”).
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Algorithm 5.1: Extracting of production rule
Input:
1. concept C, dependent on concepts C1,...,Ck (in some ontology).
2. layer table LTC for concept C,
3. label e of layer, that can be placed in the successor of computed

production rule.

Output: The production rules with the pattern C ≥ e placed in its
successor.

begin1

Select all rows from the table LTC in which values of column aC is2

not less than e.
Find minimal values e1, ..., ek of attributes aC1 , ..., aCk

from table LTC3

for selected rows in the previous step.
Set sources patterns of new production rule on the basis of minimal4

values e1, ..., ek of attributes that were found in the previous step.
Set the target pattern of new production, i.e., concept C with the5

value e.
return (C1 ≥ e1) ∧ ... ∧ (Ck ≥ ek) ⇒ (C ≥ e)6

end7

The method of extracting production rule presented above can be applied for
various values of attribute aC . In this way, we obtain a collection of production
rules, that we mean as a production (see Section 5.6).

5.5 Relation of Production Rules with DRSA

In 1996 Professor Greco, Professor Matarazzo and Professor SÃlowiński proposed
a generalization of rough set theory for the need of multi-criteria decision prob-
lems (see, e.g., [108–111]). The main idea of this generalization is replacing the
indiscernibility relation with the dominance relation. This approach is known
under the Dominance-based Rough Set Approach (DRSA). In DRSA it is as-
sumed that the values of all attributes of a given decision table (together with
the decision attribute) are organized in a preferential way, that is, they are the
so-called criteria. This means that for each attribute a from a given decision ta-
ble a two-argument outranking relation is defined on the set of objects from this
table, and at the same time a pair (x, y) belongs to this relation if the object x is
at least as good as object y with regard to the criterion a. Using the outranking
relation the dominance relation of one object on another is defined with respect
to the established criteria set (attributes). Namely, the object x dominates ob-
ject y with respect to the criteria set B (attributes), when x outranks y with
respect to all criteria from B.

In DRSA it is possible to construct specific decision rules which is are called
dominance-based decision rules (see, e.g., [46]). Elementary conditions in the
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conditional part of these rules represent the statement that the object satisfy
a criterion a (attribute) at least (or at most) as good as a certain established
value of attribute a. Moreover, decision parts of the rules indicate that the object
belongs to at least (or at most) to a given decision class.

Let us assume that there is given the layer table LTC for the concept C which
depends on concepts C1,...,Ck in a certain ontology. It is easy to notice that each
production rule (see Section 5.3) computed for the table LTC by Algorithm 5.1
is a specific case of dominance-based rule (in the DRSA approach) established
for the table LTC . Namely, it is such a case of dominance-based rule that when
in the dominance-based rule predecessor, we consider the expression “the object
is at least as good as” in relation the concept layers C1,...,Ck represented by
conditional attributes of LTC table, and in the dominance-based rule successor
“the object belongs at least to a given decision class” where decision classes are
layers of the concept C. Moreover, in the rule predecessor of such a dominance-
based rule there occur all conditional attributes.

On account of that, to establish production rules we may successfully ap-
ply algorithms known from literature for the induction of rules in the DRSA
approach (see, e.g., [46–48, 112]).

Using this approach to establish production rules, it should be remembered
that the calculated dominance-based rules do not often have all conditional at-
tributes in the predecessor. Meanwhile, according to the definition, each produc-
tion rule has all conditional attributes from the table LTC in the predecessor.
However, with an appropriate interpretation each dominance-based rule may be
treated as a production rule. It is enough to add to the predecessor all descrip-
tors corresponding to the rest of conditional attributes; and at the same time
each of the new descriptors must be constructed in such a way as to make all
tested objects match it. This effect may be achieved by placing in the descriptor
the attribute value representing the smallest preference possible.

5.6 Productions

Although a single production rule may be used as a classifier for the concept
appearing in a rule predecessor, it is not yet a complete classifier, i.e., allowing
to classify all objects belonging to an approximated concept, and not only those
which match concepts of a rule predecessor. Therefore, in practice production
rules are grouped into the so called productions (see, e.g., [28, 31, 74, 143, 144,
235–237, 239]), i.e., production rule collections, in a way that to each production
there belong rules having patterns for the same concepts in a predecessor and
successor, but responding to their different layers.

Definition 18. (A production)
Let us assume that:

– A = (U,A) is a given information system of unstructured objects of the fixed
type,

– C is a concept, dependent in some ontology on concepts C1,...,Ck, where
C ⊆ U and Ci ⊆ U , for i = 1, ..., k,
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– Ti = (U,Ai, dCi
) is a decision table constructed for approximation of the

concept Ci such that Ai ⊆ A for i = 1..., k and dCi is a decision attribute
which values describe the membership of objects from U to the concept Ci,

– µEi

Ci
is a stratifying classifier for the concept Ci constructed on the basis the

table Ti, which classifies objects from the set U to layers, denoted be labels
from the set Ei, for i = 1, ..., k,

– AC = (UC , AC) is a concept approximation table for the concept C using
stratifying classifiers µEi

Ci
, for i = 1, ..., k,

– µE
C is a stratifying classifier for the concept C, which classifies objects from

the set UC to layers, denoted be labels from the set E.

1. A family of production rules P = {r1, ..., rm} is a production if and only if
for any pair of production rules ri, rj ∈ P such that ri = (p1 ∧ ... ∧ pk ⇒ p)
and rj = (q1 ∧ ... ∧ qk ⇒ q) and i < j the following two conditions are
satisfied:
– |pi|PEC(µ

Ei
Ci

)
⊆ |qi|PEC(µ

Ei
Ci

)
for i = 1, ..., k,

– |p|PEC(µE
C) ⊆ |q|PEC(µE

C).
2. The domain of a given production is a sum of all domains of its production

rules.

Bellow, we present an example of production.

Example 17. In Fig. 22 we present three production rules constructed for some
concepts C1, C2 and C approximated by three linearly ordered layers “cer-
tainly NO”, “rather NO”, “possibly NO”, “possibly YES”, “rather YES” and
“certainly YES”. This collection of production rules is an exemplary production
for concepts C1, C2 and C. Moreover, production rules from Fig. 22 have the
following interpretation:

1. if inclusion degree to a concept C1 is at least “rather YES” and to concept
C2 at least “certainly YES” then the inclusion degree to a concept C is at
least “certainly YES”;

2. if the inclusion degree to a concept C1 is at least “possibly YES” and to a
concept C2 at least “rather YES” then the inclusion degree to a concept C
is at least “rather YES”;

3. if the inclusion degree to a concept C1 is at least “possibly YES” and to a
concept C2 at least “possibly YES” then the inclusion degree to a concept
C is at least “possibly YES”.

In the case of production from Fig. 22 concept C is the target concept and
C1, C2 are the source concepts.

Any production can be used as a classifier. The method of object classification
based on production can be described as follows:

1. Preclassify object to the production domain.
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C2 ≥ ”certainly YES” C1 ≥ ”rather YES” 

C3 ≥ ”certainly YES” 

C2 ≥ ” rather YES” C1 ≥ ” possibly YES” 

C3 ≥ ”rather YES” 

C2 ≥ ”  possibly YES” C1 ≥ ”  possibly YES” 

C3 ≥ ”possibly YES” 

Fig. 22. The example of production as a collection of three production rules

2. Classify object by production.

We assume that for any production a production guard is given. Such a guard
describes the production domain and is used in preclassification of tested objects.
The production guard definition is usually based on the relation of constraints
(see Section 4.10) and its usage consists in checking whether a given object
satisfies the constraints, that is, if it belongs to the relation of constraints.

For example, let us assume that the production P is generated for the con-
cept: Is the vehicle overtaking safely?. Then an object-vehicle u is classified by
production P iff u is overtaking. Otherwise, it is returned a message “HAS
NOTHING TO DO WITH (OVERTAKING)”.

Now, we can present an exemplary algorithm for classifying objects by pro-
duction (see Algorithm 5.2).

It is worth noticing that for objects which went through preclassification
positively, two cases should be distinguished: object classification through pro-
duction and recognizing the object through production. Classification of object
through production means that such a production rule is found in the produc-
tion that the tested object matches all patterns of its predecessor. However, not
classifying the object through production means that such a production rule is
not found. There also exists a third possibility that the tested object is not rec-
ognized by production. It means that relying on production rules in production,
it is neither possible to state whether the tested object is classified by production
nor that it is not. This case concerns the situation when stratifying classifiers
realizing in practice the production patterns in the production rule predecessor
are not able to recognize a tested object. This difficulty may be greatly decreased
or even removed by applying to production patterns defining such classifiers that
always or almost always classify objects.

A questions arises whether Algorithm 5.2 is universal enough to serve not
only classifying tested objects from a given concept approximation table AC

(see Definition 15), but also to classify objects belonging to the extension of this
table. Algorithm 5.2 works on the basis of production P , which is a family of
production rules generated for concept approximation table AC . The application
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Algorithm 5.2: Classifying objects by production
Input: Tested object u and production P
Output: The membership of the object u to the concept C (Y ES or NO)
begin1

Select a complex concept C from an ontology (e.g., Safe overtaking).2

if the tested object should not be classified by a given production P3

extracted for the selected concept C then
return HAS NOTHING TO DO WITH // The object does4

not satisfy the production guard

end5

Find a rule from production P that classifies object with the maximal6

degree to the target concept of rule
if such a rule of P does not exist then7

return I DO NOT KNOW8

end9

Generate a decision value for object from the degree extracted in the10

previous step
if the extracted degree is greater than fixed threshold (e.g., possibly11

YES) then
return YES // the object is classified to C12

else13

return NO // the object is not classified to C14

end15

end16
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of each production rule only requires computation of the values of conditional
attributes of table AC . It is done with the use of stratifying classifiers which were
generated for lower ontology level concepts C1,...,Ck. These classifiers are based
on decision rules, therefore they may effectively classify tested objects outside a
given information system A (see Definition 15 and Section 2.8). It would seem
that this property transfers to Algorithm 5.2 where tested objects are classified
with the help of production rules. Unfortunately, although to classify tested ob-
jects outside table AC production rules may be applied, it is quite natural that
production rules classify tested objects incorrectly. It results from the fact that
production rules were constructed on the basis of dependencies observed between
the attribute values of table AC , whereas in the extension of this table these
dependencies may not occur. Therefore, similarly to the case of classifiers based
on decision rules, while using production rules to classify objects, arguments for
and against the membership of the tested object to a given concept should be
taken into consideration. Obviously, such duality of arguments leads to conflicts
in classifying tested objects and these conflicts must be appropriately resolved.
In practice, it means that apart from production rules classifying a tested ob-
ject to a given concept C, also production rules classifying tested objects to the
complement of concept C should be taken into consideration. The complement
of a given concept may be treated as a separate concept C ′ = U \C. Production
rules may also be generated for concept C ′ with the help of Algorithm 5.1. It re-
quires, however, a suitable redefining layers of concepts C1,...,Ck and sometimes
using another ontology to approximate C ′. As a result we obtain table AC′ ,
which may serve generating production rules. Having production PC generated
for concept C and production PC′ for concept C ′, the Algorithm 5.2 may be
modified in such a way as to be able to resolve conflicts which may occur be-
tween production rules from PC and PC′ . In this paper, we propose the following
way of resolving these conflicts. If pC and pC′ are production rules chosen by
Algorithm 5.2 from productions PC and PC′ respectively, then the tested object
is classified to concept C only when the degree of certainty of classification by
pC is higher than the degree of certainty of classification by pC′ . Otherwise, the
tested object is classified to C ′.

5.7 Approximate Reasoning Schemes

Both productions and production rules themselves are only constructed for the
two adjacent levels of ontology. Therefore, in order to use the whole ontology
fully there are constructed the so called approximate reasoning schemes which
are hierarchical compositions of production rules (see, e.g., [28, 31, 74, 143, 144,
235–237, 239]).

The synthesis of AR-scheme is carried out in a way that to a particular
production rule r lying on a lower hierarchical level of AR-scheme under con-
struction another production rule r′ on a higher level may be attached. However,
this may be done only if one of the concepts for which the pattern occurring in
the predecessor of r′ was constructed is the concept corresponding to the succes-
sor pattern of the rule r. Additionally, it is required that the pattern occurring
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in a rule predecessor from the higher level is a pattern superset occurring in a
rule successor from the lower level (in the sense of inclusion object sets matching
both patterns). To the two combined production rules some other production
rules can be attached (from above, from below or from the side) and in this way
a multilevel structure is made which is a composition of many production rules.

 

C5 ≥ ”possible YES” 
 

C5 ≥ ”rather YES” 

C1 ≥ ”possible YES”   C2 ≥ ”rather YES”    C4 ≥ ”possible YES” 
 

C5 ≥ ”possible YES” 

C1 ≥ ”possible YES”    C2 ≥ ”rather YES” 
 

C3 ≥ ”rather YES”  C4 ≥ ”possible YES” 
 

C3 ≥ ”possible YES” 

C3 ≥ ”rather YES” 

C1 ≥ ”possible YES”    C2 ≥ ”possible” YES” 
 

C1 ≥ ”possible YES”    C2 ≥ ”rather YES” 
 

C1 ≥ ”rather YES”   C2 ≥ ”certainly YES” 
 

C5 ≥ ”certainly YES” 

C3 ≥ ”certainly YES”   C4 ≥ ”certainly YES” 
    C3 ≥ ”rather YES”    C4 ≥ ”possible YES” 

 

C3 ≥ ”certainly YES”    C4 ≥ ”rather YES” 
 

C5 ≥ ” possible YES”  

AR-scheme 
as a new 

production 
rule 

Production 
for C5 

AR-scheme 

C3 ≥ ”certainly YES” 

Production 
for C3 

Fig. 23. Synthesis of approximate reasoning scheme

In Fig. 23 we have two productions. The target concept of the first production
is C5 and the target concept of the second production is the concept C3. We select
one production rule from the first production and one production rule from the
second production. These production rules are composed and then a simple AR-
scheme is obtained that can be treated as a new two-levels production rule.
Notice, that the target pattern of lower production rule in this AR-scheme is the
same as one of the source patterns from the higher production rule. In this case,
the common pattern is described as follows: inclusion degree (of some pattern)
to a concept C3 is at least “possibly YES”.

In this way, we can compose AR-schemes into hierarchical and multilevel
structures using productions constructed for various concepts. AR-scheme con-
structed in such a way can be used as a hierarchical classifier whose input is
given by predecessors of production rules from the lowest part of AR-scheme
hierarchy and the output is a successor of a rule from the highest part of the
AR-scheme hierarchy.
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In this paper, there are proposed two approaches for constructing AR-schemes.
The first approach is based on determining productions for a given ontology with
the use of available data sets. Next, on the basis of these productions many AR-
schemes are arranged which classify objects to different patterns on different
ontology levels. All these productions and AR-schemes are stored in memory
and their modification and potential arrangement of new AR-schemes is pos-
sible. Hence, if a certain tested object should be classified, it is necessary to
search in memory an AR-scheme appropriate for it and use it to classify the ob-
ject. This approach enables steering the object classification depending on the
expected certainty degree of the obtained classification. The drawback of this
approach is a need of a large memory with a quick access to production and
AR-schemes storage.

The second approach is based on a dynamic construction of AR-schemes. It
is realized in a way that only during tested object classification itself, having
been given different productions, an appropriate AR-scheme for classifying this
particular object is built. Hence, this approach does not require so much mem-
ory as the previous approach. However, to its application we need the method of
production method selection in dynamic construction of AR-schemes for tested
object classification. A certain proposal of such a method is given by Algo-
rithm 5.2 which suggests selecting from production such a production rule that
recognizes the object, i.e., the object matches all patterns from the rule prede-
cessor and production pattern from the successor of such a rule is based on a
possibly highest layer, i.e., such a rule classifies the object possibly in the most
certain way.

However, similarly to the case of a single production rule one AR-scheme
is not yet a full classifier. That is why in practice there are many AR-schemes
constructed for a particular concept which approximate different layers or con-
cept regions. For example, on the basis of two productions from Fig. 23 three
AR-schemes may be created which we show in Fig. 24. Each of these schemes is
a classifier for one of production patterns constructed for the concept C5.

The possibility of creating many AR-schemes for one concept is of a great
practical significance, because tested objects may be classified to different pro-
duction patterns which enable to capture the certainty degree with regard to
membership of the tested object to the concept. For example, let us assume that
we constructed five AR-schemes for the concept CSD (safe driving) correspond-
ing to production patterns: CSD ≥ “certainly YES”, CSD ≥ “rather YES”,
CSD ≥ “possibly YES”, CSD ≥ “possibly NO” and CSD ≥ “rather NO”. If
a certain tested object is not classified by the AR-scheme constructed for the
CSD ≥ “certainly YES” pattern, then we cannot conclude with certainty that
this object is driving safely. However, what also should be checked is the fact
if this object is not classified by the ARscheme constructed for the CSD ≥
“rather YES” pattern (then we may conclude that the object rather drives
safely) or by the AR-scheme constructed by the CSD ≥ “possibly YES” pat-
tern (which means that the vehicle perhaps drives safely). Only if the tested
object is not classified by any of these three AR-schemes, we may conclude that
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C5 ≥ ”certainly YES” 

C5 ≥ ”rather YES” C5 ≥ ”possible YES” 
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C5 ≥ ”certainly YES” 
 

Fig. 24. Three approximate reasoning schemes for concept C5

the tested object is not going safely. Then the question arises, how dangerously
that object is behaving? To solve this it should be checked if the object is clas-
sified by the AR-scheme constructed for the CSD ≥ “possibly NO” and then
CSD ≥ “rather NO” pattern. Only if none of these AR-schemes classifies the
object, we may conclude that the tested object certainly does not go safely.

It is worth noticing that similarly to the case of production rule, two cases
should be distinguished here: object classification by the AR-scheme and object
recognition by the AR-scheme. Object classification by the AR-scheme means
that the tested object belongs to all patterns lying at the bottom of the AR-
scheme and this object is classified to the pattern lying at the top of the AR-
scheme. However, not classifying the object means that the tested object does
not belong to at least one of the patterns lying at the bottom of the AR-scheme.
There is a third possibility that the tested object is not recognized by the AR-
scheme. This means that, relying on a given AR-scheme, it is not possible to
state that the tested object belongs to the pattern lying at the top of the AR-
scheme. This case concerns the situation when stratifying classifiers executing, in
practice, patterns lying at the bottom of the AR-scheme are not able to recognize
the tested object. In such a situation with regard to classifying the tested object,
there are two ways of procedure. Firstly, it may be acknowledged that the tested
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object cannot be classified using available AR-schemes. However, this approach
frequently causes that the number unclassified objects is too large. Therefore,
in practice the other approach is applied which consists in trying to classify the
tested object with the AR-schemes classifying objects to patterns representing
smaller certainty of the concept belonging, counting on the fact that such AR-
schemes have a greater extension. The drawback of this approach is, however,
the fact that a false resulting in decrease of the certainty of the tested object’s
membership to the concept is possible. This difficulty may be greatly diminished
or even removed by applying, in the production pattern, such classifiers that
always or almost always classify objects.

It is worth noticing that similarly to the case of production rules, in the
case of using AR-schemes to construct classifiers, arguments for and against the
membership of the tested object to a given concept should be taken into consid-
eration. Thus, the obtained classifier will be able to serve effective classification
not only of tested objects from a given concept approximation table AC (see Def-
inition 15) but also to classify objects belonging to the extension of this table. In
practice it means that apart from AR-schemes which classify the tested object
to a given concept, also AR-schemes which classify tested objects to the com-
plement of this concept should be taken into consideration. Obviously, conflicts
occurring at this point in classification of tested objects should be appropriately
resolved, for instance like in the case of conflicts between production rules (see
Section 5.6).

5.8 Experiments with Data

To verify effectiveness of classifiers based on AR schemes, we have implemented
our algorithms in the AS-lib programming library. This is an extension of the
RSES-lib programming library creating the computational kernel of the RSES
system (see Section 2).

The experiments have been performed on the data set obtained from the road
simulator (see Appendix A). Data set consists of 18101 objects generated by the
road simulator. We have applied the train and test method. The data set was
randomly divided into two parts: training and test ones (50% + 50%). In order
to determine the standard deviation of the obtained results each experiment was
repeated for 10 random divisions of the whole data set.

In our experiments, we compared the quality of two classifiers: RS and ARS.
For inducing RS we use RSES system generating the set of decision rules by
algorithm LEM2 (see Section 2.4) that are next used for classifying situations
from testing data. ARS is based on AR schemes.

During ARS classifier construction, in order to approximate concepts occur-
ring in ontology we used the LEM2 algorithm (see Section 2.4).

For production rule construction we used the expert method of stratifying
classifier construction (see Section 3.2). However, to classify objects using the
ARS classifier we used the method of dynamic construction of the AR-schemes
for specific tested objects (see Section 5.7).
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Decision class Method Accuracy Coverage Real accuracy
YES RS 0.977 ± 0.001 0.948 ± 0.003 0.926 ± 0.003

ARS 0.967 ± 0.001 0.948 ± 0.003 0.918 ± 0.003
NO RS 0.618 ± 0.031 0.707 ± 0.010 0.436 ± 0.021

ARS 0.954 ± 0.016 0.733 ± 0.018 0.699 ± 0.020
All classes RS 0.963 ± 0.001 0.935 ± 0.003 0.901 ± 0.003

(YES + NO) ARS 0.967 ± 0.001 0.937 ± 0.004 0.906 ± 0.004

Table 2. Results of experiments for the concept: Is the vehicle driving safely?

Method Learning time Rule set size
RS 488 ± 21 seconds 975 ± 28

ARS 33 ± 1 second 174 ± 3

Table 3. Learning time and the rule set size for concept: Is the vehicle driving
safely?

We compared RS and ARS classifiers using the accuracy, the coverage, the
accuracy for positive examples (the sensitivity or the true positive rate), the
accuracy for negative examples (the specificity or the true negative rate), the
coverage for positive examples and the coverage for negative examples, the learn-
ing time and the rule set size (see Section 2.9).

Table 2 shows the results of the considered classification algorithms for the
concept Is the vehicle driving safely? (see Fig. 6). Together with the results we
present a standard deviation of the obtained results.

One can see that accuracy of algorithm ARS for the decision class NO is
higher than the accuracy of the algorithm RS for analyzed data set. The decision
class NO is smaller that the class Y ES. It represents atypical cases in whose
recognition we are most interested in (dangerous driving a vehicle on a highway).

Table 3 shows the learning time and the number of decision rules induced
for the considered classifiers. In the case of the algorithm ARS we present the
average number of decision rules over all concepts from the relationship diagram
(see Fig. 6).

One can see that the learning time for ARS is much shorter than for RS and
the average number of decision rules (over all concepts from the relationship
diagram) for ARS algorithm is much lower than the number of decision rules
induced for RS.

The experiments showed that classification quality obtained through classi-
fiers based on AR-schemes is higher than classification quality obtained through
traditional classifiers based on decision rules (especially in the case of the class
NO). Apart from that the time spent on classifier construction based on AR-
schemes is shorter than when constructing classical rule classifiers. Also, the
structure of a single rule classifier (inside the ARS classifier) is less complicated
than the structure of RS classifier (a considerably smaller average number of de-
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cision rules). It is worth noticing that the the performance of the ARS classifier
is much more stable than the RS classifier because of the differences in data in
samples supplied for learning (e.g., to change the simulation scenario).

6 Behavioral Pattern Identification

An efficient complex dynamical systems monitoring very often requires the iden-
tification of the so-called behavioral patterns or a specific type of such patterns
called high-risk patterns or emergent patterns (see, e.g., [1, 14, 18, 19, 27, 69, 80,
124, 154, 155, 162, 163, 166, 257, 261]). They are complex concepts concerning dy-
namic properties of complex objects, dependent on time and space and expressed
in a natural language. Examples of behavioral patterns may be overtaking on
a road, behavior of a patient faced with a serious life threat, ineffective behavior
of robot team. These types of concepts are much more difficult to approximate
than complex concepts whose approximation does not require following object
changes over time and may be defined for unstructured or structured objects.
Identification of some behavioral patterns can be very important for recognition
or prediction of behavior of a complex dynamical system, e.g., some behavioral
patterns correspond to undesirable behaviors of complex objects. In this case
we call such behavioral patterns as risk patterns and we need some tools for
identifying them. If in the current situation some risk patterns are identified,
then the control object (a driver of the vehicle, a medicine doctor, a pilot of the
aircraft, etc.) can use this information to adjust selected parameters to obtain
the desirable behavior of the complex dynamical system. This can make it pos-
sible to overcome dangerous or uncomfortable situations. For example, if some
behavior of a vehicle that cause a danger on the road is identified, we can try to
change its behavior by using some suitable means such as road traffic signalling,
radio message or police patrol intervention. Another example can be taken from
medical practice. A very important element of the treatment of the infants with
respiratory failure is appropriate assessment of the risk of death. The appropri-
ate assessment of this risk leads to the decision of particular method and level
of treatment. Therefore, if some complex behavior of an infant that causes a
danger of death is identified, we can try to change its behavior by using some
other methods of treatment (may be more radical) in order to avoid the infant’s
death (see Section 6.26).

In the Fig. 25 a scheme of complex dynamical system monitoring with the
help of behavioral patterns is presented. This monitoring takes place in the
following way. At the beginning, as a result of complex dynamical system obser-
vation, there are registered data sets describing changing over time parameter
values of complex objects occurring in the system under observation. For a given
complex dynamic system domain knowledge is gathered concerning, among oth-
ers, complex behaviors of objects occurring in this system. Next, classifier nets
are constructed on the basis of this knowledge and gathered data sets which
enable perception of these patterns’ behaviors whose detection is crucial for the
correct functioning of the complex dynamical system. Identification of such pat-
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Fig. 25. Complex dynamical systems monitoring using behavioral patterns

terns enable to find out important facts about the current system situation. This
knowledge may be used by a control module which may perform a sequence of in-
tervening actions aiming at restoring or maintaining the system in a safe, correct
or convenient condition. Moreover, during complex dynamical systems monitor-
ing data sets may still be collected. On the basis of these data sets a classifier
structure identifying behavioral patterns is updated. This enable a certain type
of adaptation of applied classifiers.

In this section a methodology of complex object’s behavior monitoring is
proposed which is to be used for approximating behavioral patterns on the basis
of data sets and domain knowledge.

6.1 Temporal Information System

The prediction of behavioral patterns of a complex object evaluated over time
is usually based on some historical knowledge representation used to store in-
formation about changes in relevant futures or parameters. This information is
usually represented as a data set and has to be collected during long-term ob-
servation of a complex dynamical system (see, e.g., [14, 18, 19, 27, 224, 305]). For
example, in the case of road traffic, we associate the object-vehicle parameters
with the readouts of different measuring devices or technical equipment placed
inside the vehicle or in the outside environment (e.g., alongside the road, in a
helicopter observing the situation on the road, in a traffic patrol vehicle). Many
monitoring devices serve as informative sensors such as Global Positioning Sys-
tem (GPS), laser scanners, thermometers, range finders, digital cameras, radar,
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image and sound converters (see, e.g., [317, 339]). Hence, many vehicle features
serve as models of physical sensors. Here are some exemplary sensors: location,
speed, current acceleration or deceleration, visibility, humidity (slipperiness) of
the road. By analogy to this example, many features of complex objects are
often dubbed sensors. It is worth mentioning, that in the case of the treatment
of infants with respiratory failure, we associate the object parameters (sensors)
mainly with values of arterial blood gases measurements and the X-ray lung
examination.

Data sets used for complex object information storage occurring in a given
complex dynamical system may be represented using information systems (see,
e.g., [305]). This representation is based on representing individual complex ob-
jects by object (rows) of information system and information system attributes
represent the properties of these objects. Because in a complex dynamical sys-
tem there may occur many different complex objects, the storing of information
about individual complex object identifiers is necessary. This information may
be represented by the distinguished information system attribute which we mark
by aid. For convenience of the further discussion (see Algorithm 6.2) we assume
that the set of values of the aid attribute is linearly ordered. Therefore, the aid

attribute must be enriched by the relation ordering the set of values of this at-
tribute in a linear order. Apart from that, it should be remembered that the
complex objects occurring in complex dynamical systems change over time and
their properties (object states) should be registered at different time instants (in
other words time points). Hence, it is also necessary to store together with the
information about a given object an identifier of time in which these properties
are registered. This information may also be represented by the distinguished
information system attribute which we mark as at. Because we assume that the
identifiers of a time point are linearly ordered, then attribute at must be enriched
by a relation ordering the set of values of this attribute in a linear order.

Hence, in order to represent complex object states observed in complex dy-
namical systems, the standard concept of information system requires extension.
Therefore, we define a temporal information system [305].

Definition 19. (A temporal information system)

1. A temporal information system is a six-element tuple:

T = (U,A, aid,≤aid
, at,≤at), where:

(a) (U,A) is an information system,
(b) aid, at are distinguished attributes from the set A,
(c) ≤aid

is a relation of linear order on the set Vaid
,

(d) ≤at is a relation of linear order on the set Vat .
2. About an object u ∈ U we say that it represents the current parameters of

the complex object with identifier aid(u) at time point at(u) in the temporal
information system T.

3. About an object u1 ∈ U we say that it precedes an object u2 ∈ U in the
temporal information system T if and only if
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u1 6= u2 ∧ aid(u1) = aid(u2) ∧ at(u1) ≤at
at(u2).

4. About an object u2 ∈ U we say that it follows an object u1 ∈ U in the
temporal information system T if and only if u1 precedes u2.

5. About an object u ∈ U we say that it is situated between objects u1, u2 ∈ U
in the temporal information system T if and only if u1 precedes u and u
precedes u2.

A typical example of a temporal information system is an information system
whose objects represent vehicles’ states at different instants of their observation.

Example 18. Let us have temporal information system T = (U, A, aid, ≤aid
,

at, ≤at) whose objects represent vehicles’ states at different instants of their
observation. Attributes from the set A describe sensor parameters of the vehicle
at individual instants (e.g., speed, location, lane, etc.). The distinguished aid

attribute is a unique number identifier of each vehicle, registered in the system
T. The at attribute represents the number of time units (e.g., seconds) which
have elapsed since the starting moment of all vehicles’ observation. However, the
relations ≤aid

and ≤at are common relations ≤ on the set of natural numbers.

6.2 Representing Spatial Properties Using Concepts

In the presented approach the first step to identify the behavior of complex
objects changing over time is representing and recognizing spatial properties of
complex objects, that is, those which concern a certain chosen time point and
their recognition does not require observing complex object changes over time.
One of the most popular ways to represent these properties is representing them
using concepts. Each concept introduces the partitioning the sets of objects into
two classes, that is, the class of these objects which belong to the concept and
at the same time satisfy the property connected with the concept and the class
of objects not belonging to the concept and at the same time not satisfying the
property connected with the concept. If complex objects changing over time are
represented using temporal information systems, then the concepts representing
these objects’ properties may be defined using attributes available in this sys-
tem. The language of defining such concepts may be for example the language
GDL(T) (see Definition 5) where T is a temporal information system. Using
this language spatial properties of complex objects may be observed at single
time points. They may be for example, such concepts as: low vehicle speed, high
body temperature, considerable turn or dangerous inclination of a robot.

Another language allowing to define properties of complex objects is a lan-
guage of elementary changes of object parameters using information about how
at a given time instant the values of the elementary parameters of the complex
object changed in relation to the previous observation of this object (see [14,
15, 18, 19, 27, 30]). This property defining language is very useful when we wish
to observe complex object parameters in relation to their previous observation.

128



Examples of such properties may be: increasing or decreasing the speed of the
vehicle, moving the vehicle towards the right lane, the increasing the patient’s
body temperature.

However, the use of the two above mentioned languages for defining prop-
erties of complex objects is possible only when the concepts being defined can
be defined using formulas which use attribute values representing the current or
previous value of the complex object’s parameter. In practice, formulas of this
type may be defined by experts on the basis of domain knowledge. However, an
expert is often not able to give such an accurate definition of the concept. For ex-
ample, the concept expressed using an expert’s statement that the vehicle speed
is low is difficult to be described without additional clues using a formula of the
language GDL based on sensor attributes, although intuitively the dependence
of this concept on the sensor attributes does not raise any doubt. Similarly, an
expert’s statement that the patient’s body temperature has fallen slightly since
the last observation is difficult to be formally described without additional clues,
using the language of elementary changes of the complex object parameters (in
this case the complex object is a treated patient). Meanwhile, in everyday life
we often use such statements. Therefore, in the general case describing concepts
concerning complex object properties requires the approximation of these con-
cepts with the help of classifiers. This approximation may take place on the
basis of a decision table whose conditional attributes are attribute arrangement
from a given information system, while the decision attribute values given by
the expert (on the basis of domain knowledge) describe the membership of the
objects of the table under construction to the concept being approximated. The
classifier constructed for such a table allow to test the membership of any object
to the concept being approximated.

6.3 Temporal Information System Based on Concepts

If we decide to represent complex object properties using concepts, then a spe-
cific type of temporal information system is necessary which we call a temporal
information system based on concepts.

Definition 20. (A temporal information systems based on concepts)
A temporal information system T = (U, A, aid, ≤aid

, at, ≤at) we call a temporal
information system based on concepts (c-temporal information system or a c-
system), if all attributes from the set A apart from the aid and at attributes are
attributes representing concepts determined in the set of objects U .

Each attribute of c-system (apart from the aid and at attributes) is then a
binary attribute (taking two values). In this paper, we assume that they are 1
and 0 values, with 1 symbolizing the membership of the objects to the concept
and 0 symbolizing the membership of the object to the concept complement.

Data sets gathered for complex dynamical systems and represented using
temporal information systems usually contain continuous attributes, that is, ones
with a large number of values which we often associate with different sensor in-
dications. Therefore, if we wish to use c-systems for learning complex behavior
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of objects changing over time, then at the beginning of the learning process a
c-system must be constructed on the basis of the available temporal informa-
tion system. In order to do this a family of concepts must be defined which
replaces all attributes (apart from the aid and at attributes) of the original tem-
poral information system. It is also necessary to construct a family of classifiers
which approximate concepts from the defined family of concepts. These classi-
fiers serve as replacements of the attributes of the input system with the c-system
attributes. Such an operation are called the c-transformation.

Definition 21. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at

) is a temporal information system,
– C1, ..., Ck is a family of concepts defined on U ,
– µ1, ..., µk are a family of classifiers approximating concepts C1, ..., Ck based

on the chosen attributes from set A \ {aid, at}.

1. An operation of changing the system T to a c-system

Tc = (U,Ac, aid,≤aid
, at,≤at)

is called a c-transformation of the system T, if Ac = {aid, at, c1, ..., ck} and
for any u ∈ U : ci(u) = µi(u), for i = 1, ..., k;

2. The C-system Tc is called a result of c-transformation of the system T.

Now, we present the c-transformation algorithm for the temporal information
system (see Algorithm 6.1). Performance of this algorithm is based on construct-
ing a new information system which apart from attributes aid and at has all the
attributes based on the previously defined concepts.

With the assumption that each of the classifiers µ1, ..., µk can classify an
object within the time of order O(C), where C is a certain constant, then the
time complexity of the above algorithm is of order O(n · k), where n = card(U)
and k is the number of concepts used for constructing the attributes.

Example 19. Let us take into consideration the temporal information system
such as the one in Example 18. In such a system there may occur many con-
tinuous attributes like: the speed of the vehicle, the location of the vehicle with
regard to the crossroads, the location of the vehicle with regard to the left and
right lane, visibility and others. Therefore, this system, before being used in or-
der to approximate temporal concepts, requires c-transformation which has to
be executed on the basis of the established concepts. Also, classifiers for these
concepts which were constructed earlier with the use of attributes from a given
system are necessary. They may be, for example, the following concepts:

1. low (average, high) vehicle speed (approximation using the attribute: speed),
2. increasing (decreasing, maintaining) the vehicle speed in relation to the pre-

vious time point (approximation using attributes: speed and speed in the
previous time point),
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Algorithm 6.1: C-transformation
Input:
1. temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that
U = {u1, ..., un},

2. family of concepts C1, ..., Ck defined in the set U ,
3. family of classifiers µ1, ..., µk approximating concepts C1, ..., Ck on the basis

of attributes from the set A \ {aid, at}.
Output: The C-system Tc = (U,Ac, aid,≤aid

, at,≤at
) such that

Ac = {aid, at, c1, ..., ck}, where attributes c1, ..., ck represent
concepts C1, ..., Ck

begin1

Create an empty information system Tc which has attributes2

aid, at, c1, ..., ck where attributes aid and at are of the identical
type as their counterparts in system T and attributes c1, ..., ck are
binary attributes // Tc is without any objects for the
time being

for i := 1 to n do3

Create an empty list of values L.4

Add aid(ui) to the list L.5

Add at(ui) to the list L.6

for j = 1 to k do7

Add µj(ui) to the list L.8

end9

Add new object represented by values from L to the system Tc.10

end11

return Tc12

end13
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3. high (average, low) distance from the crossroads (approximation using the
attribute: distance from the crossroads),

4. driving in the right (left) lane (approximation using the attribute: the loca-
tion of the vehicle with regard to the left and right lane),

5. small movement of the vehicle towards the left (right) lane (approximation
using attributes: the location of the vehicle with regard to the left and right
lane and the location of the vehicle with regard to the left and right lane in
the previous time point),

6. location of the vehicle at the crossroads (symbolic attribute moved from the
initial system),

7. good (moderate, bad) visibility on the road,
8. high humidity (low humidity, lack of humidity) of the road.

After performing the c-transformation, the temporal information system from
Example 18 is already a c-temporal information system, that is, apart from aid

and at attributes all of its attributes are binary ones representing concepts.

Let us notice that the concepts applied during the c-transformation are usu-
ally constructed using discretization of chosen continuous attributes of a given
information system performed manually by the expert. Obviously, this discretiza-
tion may also be performed with the use of automatic methods (see Section 2.2).

6.4 Time Windows

The concepts concerning properties of unstructured complex objects at the cur-
rent time point in relation to the previous time point are a way of representing
very simple behaviors of the objects. However, the perception of more complex
types of behavior requires the examination of behavior of complex objects over
a longer period of time. This period is usually called the time window (see, e.g.,
[14, 18, 19, 27, 224, 305]), which is to be understood as a sequence of objects of a
given temporal information system registered for the established complex object
starting from the established time point over the established period of time or
as long as the expected number of time points are obtained. Therefore, learning
to recognize complex types of behavior of complex objects with use of gathered
data as well as the further use of learned classifiers to identify the types of be-
havior of complex objects, requires working out of the mechanisms of extraction
of time windows from the data and their properties. That is, why we need the
language of extraction of time windows from the c-system which we are about
to define.

Definition 22. (A language for extracting time windows)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system and let Z2

be the set of integer numbers equal or greater than 2. A language for extracting
time windows from system T (denoted by ETW (T) or ETW -language, when T
is fixed) is defined in the following way:
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• the set ALETW (T) = Vaid
∪ Vat

∪ Z2 ∪ {“, ”} is called an alphabet of
the language ETW (T),
• the set of atomic formulas of the language ETW (T) is defined as a set of
three-element tuples in the following form: (i, b, s), where i ∈ Vaid

, b ∈ Vat

and s ∈ Z2.

Now, we determine the semantics of the language ETW (T). The language
ETW (T) formulas may be treated as the descriptions of object sequences oc-
curring one after another in system T.

Definition 23. Let T = (U, A, aid, ≤aid
, at, ≤at

) be a c-temporal information
system. A satisfiability of an atomic formula φ = (i, b, s) ∈ ETW (T) by an
object u ∈ U from T (denoted by u |=ETW (T) φ), is defined in the following way:

u |=ETW (T) (i, b, s) ⇔
aid(u) = i ∧ card({x ∈ U : x precedes u ∧ b ≤at

at(x)}) < s.

Let us notice that an object u ∈ U satisfies a formula φ = (i, b, s) ∈ ETW (T)
iff the following two conditions are satisfied:

1. the identifier of the object u is equal i,
2. the number of objects registered since b to at(u) is less than s.

Formulas of the language ETW describe sets of objects which we call time
windows.

Definition 24. (A time window)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system.

1. A time window in the c-temporal information system T is a set |φ|ETW (T),
where φ ∈ ETW (T).

2. The family of all time windows from the c-temporal information system T
is denoted by TW (T).

3. If W ∈ TW (T) then the number card(W ) is called a length of time window
W and is denoted by Length(W ).

4. The family of all time windows from the c-temporal information system T
with length equals to s is denoted by TW (T, s).

Because according to the definition of semantics of the language ETW (T)
the elements of each time window W ∈ TW (T, s) are linearly ordered by re-
lation ≤at , then each time window may be treated as an ordered sequence
W = (u1, ...., us) of objects from set U . Additionally each i-th object of time
window W we mark with W [i], where i ∈ {1, ..., s}.

Here is an example of extraction of the time window from the c-temporal
information system.
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Example 20. Let us consider c-system T = (U, A, aid, ≤aid
, at, ≤at

) whose ob-
jects represent the states of vehicles at different time points. The attributes from
set A describe concepts representing sensor properties of vehicle parameters at
individual points (e.g., high velocity, small acceleration, etc.). The distinguished
attribute aid is a unique identifier of each vehicle and attribute at represents
the observation time registered in a given object of system T. To simplify mat-
ters let us assume that the values of attributes at and aid are natural numbers.
Let us consider the vehicle with identifier 5 for which one hundred time points
have been registered in the system from the time point with identifier 11 to the
time point with identifier 109. For this vehicle we could, for example, isolate a
time window defined by formula (5, 20, 31) which represents the behavior of the
vehicle from the time point marked 20 to the time point marked 50.

6.5 Temporal Concepts

More complex types of behavior of complex objects may be defined using time
widows over complex concepts which we call temporal concepts. We assume
that temporal concepts are specified by a human expert. Temporal concepts
are usually used in queries about the status of some objects in a particular
time window. Answers to such queries can be of the form Y es, No or Does not
concern. For example, in the case of road traffic one can define complex concepts
such as Is a vehicle accelerating in the right lane?, Is a vehicle speed stable while
changing lanes?, or Is the speed of a vehicle in the left lane stable?.

Intuitively, each temporal concept (defined on the time window) depends on
object properties observed at some time points. At the same time we mean both
spatial properties, that is, properties registering the spatial value of the complex
object parameter observed at the time point, e.g., the left driving lane of the
vehicle, high speed of the vehicle, low the patient’s body temperature) as well as
the properties describing elementary changes of complex object parameters in
relation to the previous observation of this object (e.g., increasing or decreas-
ing the speed of the vehicle, small move of the vehicle towards the right lane,
the increasing the patient’s body temperature). Such simple concepts we call el-
ementary concepts. Usually it is possible to provide the ontology which shows
a dependence between a temporal concept and some elementary concepts. For
example, the temporal concept accelerating and changing lanes from right to left
depends on such elementary concepts as high speed, low speed, increasing speed,
decreasing speed, small move of the vehicle towards the left lane.

6.6 Temporal Patterns

It would seem that temporal concepts as concepts on the higher hierarchical level
of ontology may be approximated using elementary concepts which are on the
lower ontology level (see Section 6.5). It is sufficient to build a concept approx-
imation table for the approximated concept. However, during the construction
of such a table we encounter a serious problem resulting from the difference in
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meaning (semantical difference) of objects being examples and counterexamples
of concepts on both ontology levels. Therefore, concepts on the lower ontology
level are defined for time points, while temporal concepts on the higher ontology
level are determined on time windows. In other words the observations of objects
at time points are examples and counterexamples for concepts on the lower on-
tology level. However, the objects which are examples and counterexamples for
temporal concepts are the observations of complex objects registered over time
windows, that is, sequences of object observations from time points. For this
reason we cannot apply here the construction method of conditional attributes
from Section 5.1 which is based on the language PEC, since that method re-
quired for the concepts existing on both ontology levels to concern the same type
of objects.

That is why to define the attributes which approximate temporal concepts we
need to introduce a different language which can make it possible to transfer the
spatial properties of complex objects registered at time points onto the property
level of complex objects over the time window. In this paper, for this purpose
we propose a language for definnig features of time windows.

Definition 25. (A language for definnig features of time windows)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system. A lan-
guage for definnig features of time windows of c-temporal information system
T (denoted by FTW (T) or FTW -language, when T is fixed) is defined in the
following way:

• the set ALFTW (T) = (A \ {aid, at}) ∪ {ExistsPoint, EachPoint,
MajorityPoints, MinorityPoints, FirstPoint, LastPoint, OrderPoints}
∪ {¬,∨,∧} is an alphabet of the language FTW (T),
• for any a, b ∈ A \ {aid, at} expressions of the form ExistsPoint(a),
EachPoint(a), MajorityPoints(a), MinorityPoints(a), FirstPoint(a),
LastPoint(a), OrderPoints(a, b) are atomic formulas of the language
FTW (T).

Now, we determine the semantics of the language FTW (T). The formulas
of the language FTW (T) may be treated as the descriptions of time windows
in system T. For example, the formula ExistsPoint(a) is interpreted as the
description of all those time windows of system T in which such an object u
has been observed that a(u) = 1. Thus, we observed an object belonging to
the concept represented by attribute a. Time windows may be described by
different formulas, however, for formula φ to have sense in system T, that is, to
be semantically correct in the language FTW (T), there has to exist at least one
time window which is described by formula φ. For such a window we say that it
satisfies formula φ.

Definition 26. Let T = (U, A, aid, ≤aid
, at, ≤at) be a c-information system

and let s be a length of time windows. The satisfiability of an atomic formula
φ ∈ FTW (T) by a time window W ∈ TW (T, s) (denoted by W |=FTW (T) φ), is
defined in the following way:
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1. W |=FTW (T) ExistsPoint(a) ⇔ exists u ∈ W such that a(u) = 1,
2. W |=FTW (T) EachPoint(a) ⇔ for any u ∈ W is satisfied a(u) = 1,
3. W |=FTW (T) MajorityPoints(a) ⇔

card({u ∈ W : a(u) = 1}) > b(Length(W )− 1)/2c,
4. W |=FTW (T) MinorityPoints(a) ⇔

card({u ∈ W : a(u) = 1}) < d(Length(W )− 1)/2e,
5. W |=FTW (T) FirstPoint(a) ⇔ a(W [1]) = 1,
6. W |=FTW (T) LastPoint(a) ⇔ a(W [s]) = 1,
7. W |=FTW (T) OrderPoints(a, b) ⇔ exist i, j ∈ {1, ..., s} such that:

i < j ∧ a(W [i]) = 1 ∧ b(W [j]) = 1.

It is worth noticing that the formulas of the language FTW (T) may not only
be satisfied by time windows from the set TW (T) but also by time windows of
the set TW (T′) where T′ is a temporal information system with an extended
set of objects in relation to system T.

Below we present several examples of formulas of the language FTW .

– If attribute a stores information about membership to the concept of low
speed, then formula EachPoint(a) describes a time window in which the
vehicle’s speed is low all the time.

– If attribute a stores information about membership to the concept of accel-
erating, then formula ExistsPoint(a) describes time windows in which the
vehicle happened to accelerate.

– If attribute a1 stores information about membership to the concept of accel-
erating and attribute a2 stores information about membership to the concept
of driving in the right lane, then formula ExistsPoint(a1) ∧ EachPoint(a2)
describes the time window in which the vehicle happened to accelerate and
the whole time drive in the right lane.

It is worthwhile mentioning that the language FTW defined above should be
treated as an exemplary language for defining features of time windows, which
has been used in experiments related to this paper. Obviously, it is possible to
define many other languages of this type.

The FTW language formulas can be used to define patterns describing the
properties of time windows, therefore, we call them temporal patterns.

Definition 27. (A temporal pattern)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system. Any
formula of the language FTW (T) is called a temporal pattern of the system T.

Temporal patterns are often used in queries with binary answers such as
Yes or No. For example, in the case of road traffic we have exemplary temporal
patterns such as Did vehicle speed increase in the time window?, Was the speed
stable in the time window?, Did the speed increase before a move to the left lane
occurred? or Did the speed increase before a speed decrease occurred?.

We assume that any temporal pattern ought to be defined by a human expert
using domain knowledge accumulated for the given complex dynamical system.
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6.7 Information System of Time Windows

The properties of the accessible time windows could be represented in a special
information system which is called an information system of time windows (see
also Fig. 26).
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Fig. 26. The scheme of an information system of time windows

Definition 28. (An information system of time windows)
Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system,

– s is a fixed length of time windows such that 1 < s ≤ card(U),
– Φ = {φ1, ..., φk} ⊆ FTW (T) is a family of temporal patterns defined by

experts (sub-language of the language FTW (T)),
– PFTW = (U,Φ, |=FTW (T)) is a property system, where U = TW (T, s).

The information system T = (U, A) defined by the property system PFTW is
called an information system of time windows (TW -information system).

Apparently, construction system T requires generating the family of all time
windows of established duration. Therefore, below we present the algorithm for
generating all time windows of established duration (length) from a given c-
system (see Algorithm 6.2).

On account of sorting objects in system T, pessimistic time complexity of
Algorithm 6.2 is of order O(n · log n), where n is the number of objects in the
system T.

Example 21. For the c-temporal information system from Example 19 an infor-
mation system of time windows may be constructed. In order to do this, we
may use for example temporal patterns chosen from the following collection of
patterns:
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Algorithm 6.2: Generating all time windows
Input:
– temporal information system T = (U, A, aid, ≤aid

, at, ≤at
) such that

U = {u1, ..., un},
– fixed length s of time windows such that 1 < s ≤ n.
– relation of linear order ≤{aid,at} defined on U × U in the following way:

∀(u1, u2) ∈ U × U : u1 ≤{aid,at} u2 ⇔ u1 ≤aid
u2 ∧ u1 ≤at

u2.

Output: The set of time windows TW (T, s)
begin1

Create empty list TW of windows2

Sort set U using relation ≤{aid,at}3

Create empty list window of objects from the set U4

currentID := aid(u1)5

Insert u1 to the list window6

for i := 2 to n do7

if (aid(ui) = currentID) then8

if (Length(window) < s) then9

Add ui to the end of the list window10

else11

Remove the first object from the list window12

Add ui to the end of the list window13

Add window to family TW14

end15

else16

Clear the list window17

currentID := aid(ui)18

Insert ui to the list window19

end20

end21

return TW22

end23
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1. low (moderate, high) vehicle speed at the first point (at the last point, at
any point, at all points, at the minority of points, at the majority of points)
of the time window,

2. low (moderate, high) maximal (minimal, average) speed of vehicle at the
time window,

3. increasing (decreasing, maintaining) the speed of the vehicle (at the last
point, at any point, at all points, at the minority of points, at the majority
of points) of the time window,

4. low speed (moderate speed, high speed, increasing speed, decreasing speed,
maintaining speed) in the time window before high speed (moderate speed,
low speed, increasing speed, decreasing speed, maintaining speed) in the
further part of the time window,

5. low (moderate, high) distance of the vehicle from the crossroads at the first
point (at the last point, at any point, at all points, at the minority of points,
at the majority of points) of the time window,

6. driving in the right (left) lane at the first point (at the last point, at any
point, at all points, at the minority of points, at the majority of points) of
the time window,

7. a slight turn towards the left (right) lane at the first point (at the last point,
at any point, at all points, at the minority of points, at the majority of
points) of the time window,

8. the location of the vehicle at the crossroads at the first point (at the last
point, at any point, at all points, at the minority of points, at the majority
of points) of the time window,

9. good (moderate, bad) visibility at the first point (at the last point, at any
point, at all points, at the minority of points, at the majority of points) of
the time window,

10. high humidity (low humidity, lack of humidity) of the road at the first point
(at the last point, at any point, at all points, at the minority of points, at
the majority of points) of the temporal.

It is easy to notice that each of the above patterns may be expressed in language
FTW .

The choice of specific patterns for the construction of the information system
of time windows should depend on the concept which is to be approximated with
the help of this system, obviously after performing the grouping (clustering) of
objects (see Section 6.9).

6.8 Clustering Time Windows

The properties of time windows expressed by temporal patterns could be used
for approximating temporal concepts which express more complex properties of
time windows. However, it often happens that the objects of the information
system of time windows (that is, system T) are not yet sufficient to use their
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properties for approximating temporal concepts. It is so due to the fact that there
are too many of those objects and the descriptions of time windows which they
represent are too detailed. Hence, if they are used for approximating temporal
concepts, then the extension of the created classifier would be too small, which
means that the classifier could classify too small number of tested objects.

Therefore, in this paper we use clustering (grouping) such objects which
leads to obtaining a family of object clusters (clusters of time windows). From
the general view point the grouping objects is always done using the language
chosen by an expert and it is based on the fact that the clusters of objects
are represented using formulas (patterns) defined in the language of grouping.
Thanks to those patterns not only the objects of a given system are grouped but
it is also possible to examine membership of other (tested) objects to individual
clusters. Namely, we may say about the tested object that it belongs to the
cluster when it satisfies the pattern describing this cluster.

In this paper, we propose the language NL(T) (neighborhood language) (see
Definition 8) for grouping objects of system T = (U, A). The application of this
language for object grouping requires defining the two following elements:

1. the dissimilarity function DISMT of object pairs in the information system
T (see Definition 7),

2. the family of formulas included in the set NL(T) which defines clusters of
objects in system T (see Definition 8).

We define the dissimilarity function using a dissimilarity classifier µDISMT

approximating it which is constructed for the dissimilarity table carefully speci-
fied by the expert.

However, defining the family of formulas included in NL(T), which defines
clusters of objects in system T, requires the introduction of a subset of objects
of system T which are centers (generators) of clusters being created and the se-
quence of radiuses corresponding to them and limiting the clusters. Each atomic
formula of the language NL(T) is, therefore, expression (u, ε) (where u ∈ U and
ε ∈ (0, 1]), and at the same time such a formula encompasses all the objects
for which the value of the dissimilarity function DISMT in relation to object
u does not exceed value ε. Therefore, meanings of such formulas are in a sense
neighborhoods of the objects membership to U .

The choice of the centers of those neighborhoods in order to construct formu-
las defining clusters should not be made at random. Objects being the centers
of neighborhoods are called standards whereas the radiuses of neighborhoods
deviations from the standards (see, e.g., [74]). Both the standards and the de-
viations from them could be provided by experts. However, if this is for some
reason difficult, there could be applied methods of determining standards and
the deviations from them known from literature. It should be noted that in con-
temporary literature methods of this kind are often called granulation methods
and the neighborhoods are called granules (see, e.g., [74, 186, 233, 234, 263, 264,
286, 288, 344]).

In this paper, we propose the following clustering algorithm for automatic
generation of object clusters, which is very similar to the algorithm presented in
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paper [187]. This algorithm is a greedy algorithm which initially chooses the ob-
ject which has the biggest neighborhood and removes from the set being covered
objects belonging to this neighborhood, thus choosing another neighborhood
until it covers the whole set of objects (see Algorithm 6.3).

Algorithm 6.3: Clustering objects from an information system of time
windows (version 1)
Input:
– information system of time windows T = (U, A) such that U = {u1, ..., un},
– dissimilarity function DISMT of object pairs in the system T,
– deviation from standards ε.

Output: The family of formulas F ⊆ NL(T) defining clusters in the
system T

begin1

F := ∅2

for i := 1 to n do3

Compute a neighborhood N(ui) = {u ∈ U : DISMT(ui, u) ≤ ε}4

end5

Sort the set U in descending order // By sizes of neighborhoods6

computed in the previous step
repeat7

Take object u ∈ U such that its neighborhood is maximal8

F := F ∪ (u, ε)9

U := U \N(u)10

until U 6= ∅11

return F12

end13

On the account of calculation of the neighborhoods for all the objects from
set U , the computational time complexity of Algorithm 6.3 is of order O(n2). In
the case of bigger tables it may hinder or even make it impossible to effectively
use this algorithm. Therefore, we also present a random version of the above
algorithm (see Algorithm 6.4 and [187]).

As it can be observed, Algorithm 6.4 is in practice significantly faster in
relation to Algorithm 6.3 because it does not require determining neighborhoods
for all the objects from set U , but only for the objects chosen randomly from set
U .

From the formal viewpoint, clusters of time windows are defined using the
language ECTW .

Definition 29. (A language for extracting clusters of time windows)
Let us assume that:
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Algorithm 6.4: Clustering objects from an information system of time
windows (version 2)
Input:
– information system of time windows T = (U, A) such that U = {u1, ..., un},
– dissimilarity function DISMT of object pairs in the system T,
– deviation from standards ε.

Output: The family of formulas F ⊆ NL(T) defining clusters in the
system T

begin1

F := ∅2

repeat3

Randomly select u ∈ U4

Compute a neighborhood N(u) = {v ∈ U : DISTT(u, v) ≤ ε}5

F := F ∪ (u, ε)6

U := U \N(u)7

until U 6= ∅8

return F9

end10

– T = (U, A, aid, ≤aid
, at, ≤at) is a c-temporal information system,

– T = (U,A) is information system of time windows for the system T.

Any neighborhood language NL(T) is called a language for extracting clusters
of time windows from system T (denoted by ECTW (T) or ECTW -language,
when T is fixed).

The formulas of the language ECTW describe clusters of time windows from
the temporal information system.

Definition 30. (A cluster of time windows)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system. The
meaning any formula φ ∈ ECTW (T) is called a cluster of time windows from
the system T.

In the example below we illustrate how the dissimilarity function may be
defined for the time windows grouping.

Example 22. For the information system of time windows obtained in Exam-
ple 21, a dissimilarity function may be constructed on the basis of expert knowl-
edge. In order to do this, the value of the dissimilarity function for a certain
(the most representative set of object pairs of this system) should be obtained
from the experts. To make it happen, the expert should know what temporal
concept is approximated using clusters obtained with the help of currently de-
fined dissimilarity function (see Section 6.9). Let us assume that it is the concept
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accelerating in the right lane. In terms of this concept the expert may immedi-
ately define several vehicle groups which behave very similarly, that is, vehicles
being in one of such groups, in terms of the dissimilarity function being con-
structed, should not differ too much. For example, they may be the following
vehicle groups:

A. vehicles which accelerate in a given time window but they do it with a smaller
or bigger intensity,

B. vehicles which accelerate in a given time window, however, they do not do it
in a continuous manner, sometimes maintaining stable speed but they never
decrease it,

C. vehicles which in a given time window increase, decrease or at times maintain
stable speed,

D. vehicles which decrease speed in a given time window but they do it with a
smaller or bigger intensity.

In Table 4, values of chosen attributes (temporal patterns) are presented for
objects u1, u2, u3, u4, and u5 of a certain information system of time windows.

It is easy to notice that object u1 belongs to the group of vehicles A and does
not belong to the groups B, C and D. Similarly, object u2, which is presented
in the table, also belongs to group A. The reason for this is the fact that both
objects increased the speed the whole time, but object u2 at the end of the time
window reached a high speed and object u1 only moderate speed. That is why,
the dissimilarity function value for these two objects is low, that is, 0.1, whereas
object u3 belongs to group B, for it maintained stable speed throughout a part
of the window. Therefore, the dissimilarity function between objects u2 and u3 is
bigger and equals 0.25. Object u4 belongs to group C and therefore the difference
between this object and object u1 is 0.5. Finally, the dissimilarity function value
between objects u2 and u5 (u5 belongs to group D) is the biggest and is as big
as 1.0, for in terms of the concept accelerating in the right lane these objects
differ to the maximum because object u1 is increasing speed and object u5 is
decreasing speed all the time. The dissimilarity function values proposed for all
object pairs are compared in Table 5. Finally, we notice that objects u1, u3, u4

and u5 may be treated as standards for which the deviation is 0.1.

If there is a family of standards given along with their deviations, then on
their basis we can construct a family of formulas of the language NL(T) which
represent the established clusters in system T. Now, in order to construct a new
information system which represents the clusters’ properties we need to define
the language defining the cluster features.

Definition 31. (A language for defining features of clusters of time windows)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system and T =
(U,A) be an information system of time windows for the system T. A language
for defining features of clusters of time windows for the system T (denoted by
FCTW (T) or FCTW -language, when T is fixed) is defined in the following
way:
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No Temporal patterns u1 u2 u3 u4 u5

1. High speed of the vehicle at the first point of the
time window

0 0 0 0 1

2. Moderate speed of the vehicle at the first point of
the time window

0 0 0 1 0

3. Low speed of the vehicle at the first point of the
time window

1 1 1 0 0

4. Increasing the speed of the vehicle at all points of
the time window

1 1 0 0 0

5. Increasing the speed of the vehicle at some point
of the time window

1 1 1 1 0

6. Maintaining stable speed of the vehicle at all
points of the time window

0 0 0 0 0

7. Maintaining stable speed of the vehicle at some
time window point

0 0 1 1 0

8. Decreasing speed of the vehicle at all points of
the time window

0 0 0 0 1

9. Decreasing speed of the vehicle at some point of
the time window

0 0 0 1 1

10. High speed of the vehicle at the last point of the
time window

0 1 0 1 0

11. Moderate speed of the vehicle at the last point of
the time window

1 0 1 0 0

12. Low speed of the vehicle at the last point of the
time window

0 0 0 0 1

Table 4. Exemplary objects of some TW-information system

u1 u2 u3 u4 u5

u1 0 0.1 0.25 0.5 1.0
u2 0.1 0 0.25 0.5 1.0
u3 0.25 0.25 0 0.25 0.75
u4 0.5 0.5 0.25 0 0.5
u5 1.0 1.0 0.75 0.5 0

Table 5. Values of dissimilarity function for pairs of time windows
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• the set ALFCTW (T) = ALFTW (T) ∪ {ExistsWindow, EachWindow,
MajorityWindows, MinorityWindows} is an alphabet of the language
FCTW (T),
• for any α, β ∈ FCTW (T) expressions of the form: ExistsWindow(α),
EachWindow(α), MajorityWindows(α), MinorityWindows(α) are atomic
formulas of the language FCTW (T).

Now, we define the semantics of the language FCTW (T). The formulas of
the language FCTW (T) may be treated as the descriptions of families of time
windows in system T. For example, formula ExistsWindow(α) is interpreted as
the description of all those families of time windows of system T in which there
exists at least one such window that satisfies formula α.

Definition 32. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at

) is a c-temporal information system,
– T = (U,A) is a information system of time windows for the system T.

The satisfiability of an atomic formula α ∈ FCTW (T) by a family of time
windows W = {W1, ..., Wk} ⊆ TW (T) (denoted by W |=FCTW (T) α), is defined
in the following way:

1. W |=FCTW (T) ExistsWindow(α) ⇔ ∃W∈W W |=FTW (T) α,
2. W |=FCTW (T) EachWindow(α)) ⇔ ∀W∈W W |=FTW (T) α,
3. W |=FCTW (T) MajorityWindows(α)) ⇔

card({W ∈ W : W |=FTW (T) α}) > b(k − 1)/2c,
4. W |=FCTW (T) MinorityWindows(α)) ⇔

card({W ∈ W : W |=FTW (T) α}) < d(k − 1)/2e.

Below we present several examples of formulas of the language FCTW .

– If attribute a1 of system T stores information about membership to the con-
cept of accelerating, then formula ExistsWindow(LastPoint(a1)) describes
such clusters of time windows where there is a window in which acceleration
occurred at the last point of this window.

– If attribute a1 of system T stores information about membership to the
concept of accelerating, then formula MajorityWindows(EachPoint(a1))
describes such clusters of time windows that in the majority of them the
speed is being increased all the time.

– If attributes a1 and a2 of system T store information about membership
respectively to the concepts of accelerating and decelerating, then formula
¬ExistsWindow(ExistsPoint(a2)) ∧ EachWindow(ExistsPoint(a1)) de-
scribes such clusters of time windows in which there does not exist a single
window in which deceleration occurred and in all the windows of this cluster
the speed is increased.
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The patterns of the language FCTW could be utilized to define the properties
of clusters of time windows. Due to this clusters of time windows are represented
by information systems which we call an information system of clusters of time
windows.

Definition 33. (An information system of clusters of time windows)
Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at

) is a c-temporal information system,
– T = (U,A) is a information system of time windows for the system T.
– ψ1, ..., ψn ∈ ECTW (T) is a defined by experts family of temporal patterns

corresponding to clusters of time windows CL1, ..., CLn,
– Φ = {φ1, ..., φm} ∈ FCTW (T) is a defined by experts family of features of

clusters of time windows,
– PFCTW = (U,Φ, |=FCTW (T)) is a property system, where U = {CL1, ..., CLn}.

The information system T = (U, A) defined be the property system PFCTW is
called an information system of clusters of time windows (CTW -information
system).

It is easy to see that construction of the system T requires generating clusters
of time windows in such a way that it could be possible to check the ability to
satisfy formulas of the language FCTW (T). Such clusters may be generated by
the linear overview of set U and assigning the objects of this set to individual
clusters. The complexity of such an algorithm would be of order O(l · n), where
n is the number of clusters and l = card(U).

Example 23. Using the dissimilarity function from Example 22, the objects of
the information system of time windows from Example 21 may be clustered.
However, in order to construct an information system for the determined family
of clusters, patterns should be established. They may be the following:

1. in each time window of a cluster there occurs speed increase the whole time
(the pattern describes the properties of vehicles from group A from Exam-
ple 22)

2. in each time window of a cluster there occurs speed increase (the pattern
describes the properties of vehicles from groups A, B, C from Example 22),

3. in the majority of time windows of the cluster there does not occur speed
increase,

4. in the cluster there exists a time window in which there occurs speed decrease
(the pattern describes the properties of vehicles from groups C and D from
Example 22),

5. in each time window of the cluster at the first time point of the window the
speed is low and at the last point of the window it is high or moderate,

6. in most time windows of the cluster the vehicles drive in the right lane the
whole time.
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The choice of specific patterns to construct the information system of clusters
of time windows depends on the temporal concept which is approximated with
the help of this system (see Section 6.9).

6.9 Temporal Concept Table

The properties of clusters of time windows expressed by formulas of the lan-
guage FCTW may be used for constructing decision tables which enable the
identification of temporal concepts. For this purpose, it is necessary to add to
system T a decision attribute which characterizes the cluster’s membership to
the established temporal concept. In this way, we obtain a decision table which
is called the temporal concept table (see Fig. 27).

 

Time window  
cluster 1 

Time window 
cluster 2 

     . 
       . 

Time window 
cluster n 

a1 ........... ak C 
0 ....... 1 YES 

1 ....... 1 NO 

. ....... . . 

. ....... . . 

1 ....... 0 YES 

Columns computed 
on the basis of 

temporal patterns 
defined for time 
window clusters 

Row  
corresponds 

to time 
window 
cluster  

The column defined by 
an expert  

(answers to query defined 
for temporal concept C)  

Fig. 27. The scheme of a temporal concept table

Definition 34. (A temporal concept table)
Let us assume that:

– T = (U,A) is a information system of clusters of time windows,
– C is concept defined in the set U .

A temporal concept table for the concept C is a decision table TC = (U, A ∪
{dC}), where attribute dC is a membership function of the concept C.

A question arises, how it is possible that an expert can propose the value of
decision attribute dC . To make a decision concerning the value of this attribute
an expert has at his disposal the values of attributes from set A. These are
the attributes proposed earlier as the characteristic features of clusters of time
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windows. The expert could therefore propose them in such a way that he or she
is now able to use them successively in order to determine the membership of
the whole clusters to concept C. In other words the properties of clusters have
to be defined in such a way that they could serve to determine the time window
clusters’ membership to temporal concept C.

Example 24. The information system obtained on the basis of patterns such
as in Example 23 may be enriched by a decision attribute which describes the
membership of individual clusters of time windows to the established temporal
concept (e.g., the concept of accelerating in the right lane). In this way we obtain
a decision table which may serve to the approximation of this concept.

If there is given set H of linearly ordered layer labels of concept C, then
for table TC there could be constructed a stratifying classifier µH

C which can
indicate, for each time window cluster, the layer of concept C to which this
cluster belongs.

6.10 Classification of Time Windows

In practical applications we encounter a question whether the behavior of the
complex objects observed in the time window belongs to a given temporal con-
cept defined for clusters of time windows. It means the classification of time
windows to the concept determined on the set of clusters of time windows. Mean-
while, the classifier constructed for table TC can classify window clusters and
not single time windows. Therefore, before we use such a classifier, it should be
checked to which cluster of time windows the tested time window belongs. That
is how the algorithm of time window classification works (see Algorithm 6.5).
However, we assume that during execution of the Algorithm 6.5 the following
elements are available (established or computed earlier):

– a training c-temporal information system T,
– a fixed length l of time windows,
– a family of temporal patterns φ1, ..., φm ∈ FTW (T),
– a system T = (U, A) such that attributes from the set A correspond to

formulas φ1, ..., φm,
– a dissimilarity function DISMT of object pairs from the system T, approx-

imated using the stratifying classifier µDISMT
,

– a family of temporal patterns ψ1, ..., ψn ∈ ECTW (T) such that ψi =
(stdi, εi), for i = 1, ..., n,

– a system T = (U, A) such that objects from the set U correspond to clusters
defined by formulas ψ1, ..., ψn,

– a concept C defined in the set U ,
– a decision table TC = (U, A ∪ {dC}) with decision attribute representing

membership of objects from the set U to the concept C,
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– a linearly ordered set (H,≤H) such that H is a set of layer labels of the
concept C and ≤H is a relation of linear order on the set H,

– a stratifying classifier µH
C constructed for the concept C on the basis the

table TC ,
– a test c-temporal information system TTS .

Algorithm 6.5: Time window classification (ClassifyWindow)
Input: A test time window W ∈ TW (TTS , l)
Output: The layer of concept C

Procedure ClassifyWindow(W )1

begin2

Create empty list row3

for φ1, ..., φm do4

if W |=FTW (T) φi then5

Add ’1’ to the end of the list row6

else7

Add ’0’ to the end of the list row8

end9

end10

Create new object urow of the system T on the basis values of11

attributes from the list row.
Select a formula ψ = (std, ε) ∈ {ψ1, ..., ψn) such that:12

1. urow |=ECTW (T) ψ and13

2. DISMT(urow, std) = mini∈{1,...,n}{DISMT(urow, stdi)}14

Select object uψ ∈ U corresponding to the formula ψ15

return µH
C (uψ)16

end17

Because the Algorithm 6.5 classifies time windows to one layer of concept C,
it is the classifier stratifying temporal concept C.

Assuming that all operations of the examination of formulas satisfiability, the
computation of the dissimilarity function values and application of the classifier
µH

C (occurring in the above algorithm) are executed at the constant time, then
the time complexity of the above algorithm is of order O(m + n), where m is
the number of temporal patterns for time windows used and n is the number of
time window clusters.

6.11 Behavioral Graphs

Temporal concepts defined for objects from a complex dynamical system can be
treated as nodes of a graph called a behavioral graph, where connections between
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nodes represent temporal dependencies. Such connections between nodes can be
defined by an expert or read from a data set that has been accumulated for a
given complex dynamical system.

Definition 35. (A behavioral graph)

1. A behavioral graph G is an ordered pair (V,E), where V is a nonempty
and finite set of nodes (temporal concepts) and E is a set of directed edges
E ⊂ V × V (connections represent temporal dependencies between temporal
concepts).

2. A temporal path in the behavioral graph G = (V,E) is a sequence of nodes
v1, ..., vl such that for any i ∈ {1, ..., l− 1} an edge (vi, vi+1) ∈ E. A number
l is called a length of temporal path v1, ..., vl.

3. The family of all temporal paths with the length l (l > 0) in the behavioral
graph G is denoted by PATH(G, l).

Bellow, we present an example of behavioral graph.

Example 25. Fig. 28 presents an example of behavioral graph for a single object-
vehicle exhibiting a behavioral pattern of vehicle while driving on a road. In this
behavioral graph, for example, connections between node Acceleration on the
right lane and node Acceleration and changing lanes lanes from right to left
indicates that after an acceleration in the right lane, a vehicle can change to the
left lane (maintaining its acceleration during both time windows).

Acceleration
on the right lane

Deceleration
on the right lane

Stable speed
on the right lane

Acceleration and
changing lanes from

right to left

Stable speed and
changing lanes from

right to left

Stable speed and
changing lanes from

left to right

Deceleration and
changing lanes from

left to right

Acceleration
on the left lane

Deceleration
on the left lane

Stable speed
on the left lane

 

Fig. 28. A behavioral graph for a single object-vehicle
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In addition, a behavioral graph can be constructed for different kinds of
objects such as single vehicles or groups of vehicles and defined for behaviors
such as driving on the strength road, driving through crossroads, overtaking, and
passing. Therefore, we consider any behavioral graph as a model for behavioral
patterns (see Section 6.23).

6.12 Representing Spatial Properties of Structured Objects Using
Concepts

If we wish to observe the behavior of structured objects changing over time, then
it turns out that observing the behaviors of individual parts of these objects sep-
arately is not sufficient. It happens that way because if we observe the behavior
of a certain structured object we have to consider the issue what relations there
are between the types of behaviors of individual parts of this object and how
these relations coexist and change over time. For example, if we observe the
overtaking maneuver made by the structured object, which is a pair of vehicles
(the overtaking and overtaken vehicles), then we are interested in the relations
between the behavior of the overtaking vehicle and the behavior of the overtaken
vehicle. Another example may concern the observation of the courses of illnesses,
which being in the interaction with one another, develop in a given patient.

The spatial properties of such bounds may be represented using concepts
which concern the sets of structured object parts. Such concepts represent the
partition of all structured objects into those which belong to the concept and
those structured objects which do not belong to the concept being concerned.
Examples of such concepts may be concepts concerning the distance between two
chosen vehicles belonging to the group of vehicles being examined (e.g., short
distance between two vehicles, long distance between two vehicles, driving on
the same lane).

Similarly to the concepts representing spatial properties of unstructured ob-
jects, the concepts representing spatial properties of structured objects also may
be approximated. The approximation may take place on the basis of appropri-
ately constructed for this purpose decision table. Each object of such a table
corresponds to a certain structured object. Conditional attributes are the ar-
rangement of attributes from a given temporal information system registering
the parameters of individual parts of a given structured object. However, the
decision attribute of this table describes the membership of objects of the table
under construction to the approximated concept concerning the spatial property
of the whole structured object and its values are suggested by the expert on the
basis of domain knowledge. The classifier constructed for such a table allows
testing any structured object for the membership to the approximated concept.
Due to the fact that the approximated concept is spatial (it does not require
following changes over time with the exception of parameter changes since the
last observation of the structured object), we can apply here classical classifiers,
stratifying classifiers as well as classifiers based on AR-schemes. However, during
the construction of the decision table for the purpose of approximation of spa-
tial concepts for structured objects we encounter a serious problem concerning
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extraction of relevant context for the parts of structured objects. One of the
solutions to this problem could be application of a sweeping algorithm around
the complex object which is characterized in the following subsection.

6.13 Sweeping Algorithm Around the Complex Object

In the paper, each structured object occurring in a complex dynamical system
is understood as an object consisting of parts, that is, objects of lesser com-
plexity which are linked with one another by relations describing the context
in which individual parts of a structured object occur. Therefore, both learning
concepts concerning structured objects and testing structured objects for mem-
bership to such concepts requires a method of isolating structured objects under
examination. Unfortunately, the elementary approach to isolation of structured
objects which consists in analyzing all the subsets (of established number) from
the existing set of potentially parts of structured objects cannot be used because
of the high computational complexity of algorithms generating and examining
such subsets. For example, if we examine a system which has 20 complex objects
(e.g., 20 vehicles on the road) and we are interested in structured objects de-
fined as groups of 6 objects (6 vehicles as in the case of examining the dangerous
overtaking maneuver) (see Fig. 55) then the general number of groups which
require observation is equal to the number of 6-element combinations from the
20-element set, that is, (206 ) = 38760. Additionally, if the observation is carried
out only over 100 time units, then the temporal information system describing
the properties of all such groups of vehicles would have to have almost 4 million
rows!

Another possibility is the application of methods which use the context in
which the objects being parts of structured objects occur. This type of methods
isolates structured objects not by direct indication of the set of parts of the
searched structured object but by establishing one part of the searched struc-
tured object and attaching to it other parts, being in the context to the estab-
lished part. Unfortunately, also here, the elementary approach to determining
the context of the part of the structured object, consisting in examining all pos-
sible subsets (of established number) of the set of potential structured objects to
which the established part of the structured object belongs, cannot be applied
because of a great number of such subsets. For example, in order to identify a
group of vehicles which are involved in a dangerous maneuver and to which the
established vehicle belongs (to which we pay attention), it would be necessary
to follow (in real time) the behavior of all possible groups of vehicles of the
established number (e.g., six vehicles) to which the established vehicle belongs,
which is, with a relatively small number of visible vehicles, still too difficult.

Hence, we need special methods of determining the context of the established
part of the structured object based on domain knowledge, which allows to limit
the number of analyzed sets of parts of structured objects. Therefore, in this
paper we propose a special method which we call the sweeping method. The
method works in the following way: at the stage of learning the behavior for
structured objects only those structured objects are taken into account that
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came into being through the so-called sweeping around of all the complex objects
which may be part of a structured object, and at the same time for each such
object there is only one structured object constructed. The activity of sweeping
is carried out by the special sweeping algorithm which returns to the established
complex object an ordered list of these objects which are significant from the
point of view of the type of examined complex behavior of structured objects.
The organization of this list is important due to the fact that in the obtained
structured object represented by the list, each object (a part of a structured
object) can have its role in the examined complex behavior of structured objects.

Definition 36. (A sweeping algorithm around the complex object)
Let T = (U, A, aid, ≤aid

, at, ≤at
) be a temporal information system such that

objects from the set U are unstructured objects of a fixed type T. Each algorithm
SA which at the input receives a chosen object u ∈ U , and at the output re-
turns the subset of U such that the object u belongs to this subset represented in
the form of organized k-element list SA(u) (where k > 1) is called a sweeping
algorithm around the complex object.

The sweeping algorithms must be constructed individually on the basis of
domain knowledge for each complex behavior which is to be identified. By this
we mean such complex types of behavior as: overtaking vehicles on the road,
driving of a group of vehicles in a traffic jam, chasing one car after another,
persistence of respiratory insufficiency in patients. Also, the parameter k should
be fixed individually for a given sweeping algorithm.

As a result of applying the sweeping algorithm we only obtain as many struc-
tured objects as many complex objects constituting potential parts of structured
objects there are, for each of the established structured objects gets attached to
one unstructured object (one of its parts) which plays a specific role in the
structured object. For example, if we examine the behavior of a group of ve-
hicles connected with the overtaking maneuver, then the vehicle distinguished
during the sweeping algorithm’s activity may be the vehicle which overtakes. In
this group also other vehicles may be distinguished (the overtaken vehicle, the
oncoming vehicle, the vehicle driving in the back, etc.) which takes place when
we apply other sweeping algorithms (constructed for this type of objects).

We present an example of the sweeping algorithm for the purpose of recogniz-
ing the overtaking maneuver, where the distinguished overtaking vehicle is the
complex object (see Algorithm 6.6). This algorithm regards the situation pre-
sented in the Fig. 29. The group of vehicles which are returned by Algorithm 6.6
which is the so called sweeping zone comprises 6 vehicles which are the most
important from the point of view of planning and performing the overtaking
maneuver by a given vehicle (see Appendix A).

Let us notice that in the Algorithm 6.6 a number of auxiliary concepts are
used. They are for example such concepts as: going close to u, going in the
right lane, going in front of vehicle u, going behind vehicle u, going in the same
direction as u, oncoming vehicle. All these concepts require approximation, but
they are spatial concepts and therefore they are much easier to be approximated
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Algorithm 6.6: The sweeping algorithm for the purpose of recognizing
the overtaking maneuver
Input:
– temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that any
object u ∈ U is an object of the fixed type T (a single vehicle),

– object u ∈ U

Output: The sweeping zone around u
begin1

Create empty list L.2

Insert object (vehicle) u to the list L.3

If there is a vehicle in the right lane close behind to vehicle u and4

going in the same direction, add it to list L as vehicle BR (see Fig. 29).
If there is a vehicle in the left lane close behind to vehicle u, going in5

the same direction, add it to list L as vehicle BL (see Fig. 29).
If there is a vehicle close in front of vehicle u in the right lane, going6

in the same direction, add it to list L as vehicle FR1 (see Fig. 29).
If during the previous stage you added a vehicle to list L as vehicle7

FR1, then if in front of this vehicle in the right lane there is another
vehicle going close in the same direction as vehicle u, then add it to
list L as vehicle FR2 (see Fig. 29).
If there is an oncoming vehicle in front of vehicle u in the left lane,8

then add it to list L as vehicle FL (see Fig. 29).
return L as SA(u).9

end10
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than the spatio-temporal concepts. It also means that in the above algorithm
the application of classifiers approximating these concepts is necessary.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FL 

BL 

FR1 

BR 

A given 
vehicle 

FR2 

The sweeping 
zone  for  

a given vehicle 

 
 

Fig. 29. A given vehicle and its sweeping zone

One should, however, be aware of the fact that each sweeping algorithm works
on the basis of the sweeping heuristics defined by an expert. Therefore, such an
algorithm isolates only structured objects suggested by this heuristics. That is
why, it is only a very selective perception and its application requires a great
support from the experts who have to provide all crucial sweeping heuristics, in
terms of perception of the whole complex dynamical system.

During experiments with the road simulator (see Section 6.25) the sweeping
algorithm already worked at the stage of generating data using the simulator.
Therefore, in the data set there is already available information about structured
objects consisting of 6 vehicles connected with the identification of the overtaking
maneuver. Whereas, in experiments with medical data (see Section 6.26), where
a group of illnesses is the structured object, the performance of the sweeping
algorithm is based on constructing only such groups of illnesses which occurred
in particular patients from the data at the same time.

6.14 C-temporal Information System for Structured Objects

The sweeping algorithm, defined in Section 6.13, efficiently extracts structured
objects. For objects extracted in such a way we may define concepts which
may be approximated using attributes of a given temporal information system.
Thanks to that c-temporal information systems may be constructed whose at-
tributes describe spatial relation properties between parts of structured objects.
However, because the attributes of such c-system are to concern relation proper-
ties between structured objects extracted with the sweeping algorithm, it comes
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into being in a slightly different way than the standard c-system, that is, a spe-
cial algorithm is needed which constructs c-system on the basis of the available
temporal information system with the use of the sweeping algorithm. Such an
algorithm we call a cr-transformation.

Definition 37. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at

) is a c-temporal information system such that
any object u ∈ U is an object of the fixed type T ,

– C1, ..., Ck is a family of spatial concepts determined for structured objects
(parts of such objects must be registered at the same time),

– µ1, ..., µk is a family of classifiers which approximate concepts C1, ..., Ck on
the basis of the parameters of the structured object parts established on the
basis of attributes from set A \ {aid, at},

– SA is a sweeping algorithm around objects from the system T.

1. An operation of changing the system T to the c-system

Tr = (Ur, Ar, cid,≤cid
, ct,≤ct)

is called a cr-transformation of the system T iff
– Ur = {g1, ..., gn}, where gi = SA(ui) is the result returned by the sweep-

ing algorithm SA for ui, for i = 1, ..., n,
– Ar = {cid, ct, c1, ..., ck} where attributes from the set Ar are defined in

the following way:
• ∀gi ∈ Ur : cid(gi) = aid(ui) ∧ ct(gi) = at(ui),
• attributes c1, ..., ck represent concepts C1, ..., Ck where:

∀g∈Ur ci(g) = µi(g) for i = 1, ..., k.

2. The c-system Tr is called a result of cr-transformation of the system T.

We present the algorithm of the cr-transformation for the temporal informa-
tion system (see Algorithm 6.7).

Assuming that each classifier µ1, ..., µk and algorithm SA work over the time
of order O(C), where C is a certain constant, then the time complexity of the
Algorithm 6.7 is of order O(n · k), where n = card(U) and k is the number of
concepts used to construct attributes.

The result of the performance of the algorithm of the cr-transformation is the
c-system and therefore it may be used to approximate temporal concepts describ-
ing the relation between the structured object’s parts. Mechanisms of performing
such approximation are the same as in the case of temporal concepts concerning
unstructured complex objects. Finally, it leads to the behavioral graph describ-
ing complex objects being parts of structured objects with connection to the
types of behavior of other parts of these structured objects.

Fig. 30 presents an example of behavioral graph for relations between two
objects (vehicles) exhibiting a changes of distance between vehicles while driving
on a road.

156



Algorithm 6.7: Cr-transformation
Input:
1. T = (U, A, aid, ≤aid

, at, ≤at) is a c-temporal information system such that
any u ∈ U is a concept object of the fixed type T ,

2. C1, ..., Ck is a family of spatial concepts determined for structured objects
(parts of such objects must be registered at the same time),

3. µ1, ..., µk is a family of classifiers which approximate concepts C1, ..., Ck on
the basis of the parameters of the structured object parts established on the
basis of attributes from set A \ {aid, at},

4. SA is a sweeping algorithm around objects from the system T.

Output: The c-information temporal system
Tr = (Ur, Ar, cid,≤cid

, ct,≤ct)
begin1

Create an empty information system Tr which has attributes2

cid, ct, c1, ..., ck where attributes cid and ct are of the identical type
as their counterparts in system T and attributes c1, ..., ck are
binary attributes // Tr is without any objects for the
time being

for i := 1 to card(U) do3

Compute a structured object g := SA(ui).4

Create an empty list of values L.5

Add aid(ui) to the list L.6

Add at(ui) to the list L.7

for j = 1 to k do8

Add µj(g) to the list L.9

end10

Add new object represented by values from L to the system Tr.11

end12

return Tr13

end14
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Fig. 30. A behavioral graph for relations between two vehicles exhibiting a
changes of distance between vehicles while driving on a road

6.15 Sequences of Time Windows

Complex types of behavior of complex objects, treated as unstructured objects
may be described using behavioral graphs of complex objects. As a result of
temporal concept approximation classifiers may be obtained for all concepts
occurring in behavioral graphs which enable the examination of objects’ mem-
bership to the temporal concepts. Hence, behavioral graphs and classifiers for
temporal concepts allow to follow the types of behavior of the complex objects
over a longer period of time than the time window. This longer period we call
a sequence of time windows. Therefore, the learning of the perception of the
complex behavior of structured objects with the use of the gathered data and
behavioral graphs constructed for all parts of structured objects of a given type,
as well as the further use of the learned classifiers to identify the types of behav-
ior of structured objects, requires working out the mechanisms of the extraction
of sequences of time windows. Therefore, we need a language for extraction of
sequences of time windows.

Definition 38. A language for extracting sequences of time windows)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system and let Z1

be the set of integer numbers equal or greater than 1. A language for extracting
sequences of time windows from system T (denoted by ESTW (T) or ESTW -
language, when T is fixed) is defined in the following way:

• the set ALESTW (T) = Vaid
∪ Vat ∪ Z1 ∪ { “, ”} is called an alphabet of

language ESTW (T),
• the set of atomic formulas of the language ESTW (T) is defined as a set of
four-element tuples in the following form: (i, b, l, s), where i ∈ Vaid

, b ∈ Vat

and l, s are integer numbers such that l > 1 and s > 0.

158



Now, we define a semantics of the language ESTW (T). The formulas of the
language ESTW (T) are treated as descriptions of sequences of time windows
occurring one after another in system T, and at the same time each two neigh-
boring windows of such a sequence overlap at the connecting points of these
windows.

Definition 39. Let T = (U, A, aid, ≤aid
, at, ≤at

) be a c-temporal information
system and l is a length of time windows. The satisfiability of formula φ =
(i, b, l, s) ∈ ESTW (T) (where i ∈ Vaid

, b ∈ Vat
and l, s are integer numbers such

that l > 1 and s > 0) by a time window W = (u1, ..., un) ∈ TW (T) (denoted by
W |=ESTW (T) φ), is defined in the following way:

W |=ESTW (T) (i, b, l, s) ⇔

∀j∈{1,...,n} aid(uj) = i ∧ l = n ∧ p mod (l − 1) = 0 ∧ p

l − 1
< s

where p = card({x ∈ U : x precedes u1 ∧ b ≤at at(x)}).
Let us notice that a time window W = (u1, ..., un) ∈ TW (T) satisfies a

formula φ = (i, b, l, s) ∈ ESTW (T) iff the following four conditions are satisfied:

1. the time window W describes parameters of the object with the identifier i,
2. the size of the time window W is equal l,
3. the integer number of time windows with the length l has been registered

since b to at(u1), i.e., the number of time windows with the first point reg-
istered not earlier than b and preceding time point u1 (in the sense of Defi-
nition 19) is divisible by l − 1,

4. the number of time windows with the length l and with the first time point
registered since b to at(u1) is less than s.

The formulas of the language ESTW describe sets of time windows which
we call sequences of time windows.

Definition 40. (A sequence of time windows)
Let T = (U, A, aid, ≤aid

, at, ≤at) be a c-temporal information system.

1. Each set of time windows |φ|ESTW (T) which is a meaning of a certain for-
mula φ ∈ ESTW (T) we call a sequence of time windows in c-temporal
information system T.

2. A family of all sequences of time windows of a given c-temporal information
system T we denote SEQ(T).

3. If S ∈ SEQ(T) then a number card(S) we call a length of the sequence of
time windows S and it is denoted by Length(S).

4. A family of all sequences of time windows of the length s of a given c-temporal
information system T is denoted by SEQ(T, s).

5. A family of all sequences of time windows of the length s of a given c-
temporal information system T that they are windows of the length l we
denote SEQ(T, l, s).
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6. Due to the definition of the language ESTW (T) the elements of each se-
quence of time windows S ∈ SEQ(T, l, s) are linearly ordered by relation
≤at

, then each sequence of time windows sequence may be treated as an or-
dered time sequence S = (W1, ....,Ws) of time windows from the set TW (T, l).
Additionally, each i-th time window of sequence S we denote by S[i], where
i ∈ {1, ..., s}.

7. Any sequence of time windows S′ = (Wi, ..., Wj) ∈ SEQ(T, j− i+1) created
by removing from the sequence p = (W1, ...,Wk) ∈ SEQ(T, k) time windows
W1, ...,Wi−1 and Wj+1, ..., Wk, where i, j ∈ {1, ..., k} and i < j, is called a
sub-sequence of the sequence S and is denoted by Subsequence(S, i, j).

Here is an example of extracting a sequence of time windows from the c-
temporal information system.

Example 26. Let us consider system T = (U, A, aid, ≤aid
, at, ≤at

) whose ob-
jects represent states of vehicles at different time points. Attributes from set
A describe sensor parameters of the vehicle at individual points (e.g., velocity,
acceleration, location, lane). The distinguished attribute aid is a unique identi-
fier of each vehicle and attribute at represents the observation time registered
in a given object in system T. Let us assume, for the sake of simplification,
that attribute values at and aid are natural numbers. Let us take as an exam-
ple a vehicle marked with the identifier 5 for which a hundred time points are
registered in system T from the time point marked with the identifier 1 to the
time point marked with the identifier 100. For such a vehicle a sequence of time
windows may be extracted and defined by formula (5, 1, 4, 3) which represents
three time windows: W1, W2, W3 defined by formulas (5, 1, 4), (5, 4, 4), (5, 7, 4)
(see Fig. 31).

 

W1 

1 2 3 4 5 6 7 8 9 10 

W2 W3 

l = 4 

s = 3 

Fig. 31. A sequence of time windows

In practical applications the partition of a time window is an important
notion concerning the sequence of time windows. It concerns the situation in
which we extract the sequence of time windows from a given time window.
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Definition 41. (A partition of a time window)
Let T = (U, A, aid, ≤aid

, at, ≤at
) be a c-temporal information system and

W ∈ TW (T,m). A family of time windows Partition(W,k) = {W1, ..., Wk} is
called k-partition of time windows W , if the following conditions are satisfied:

1. {W1, ...,Wk} ∈ SEQ(T, l, k), where k · (l − 1) + 1 = m,

2. W =
⋃

i∈{1,...,k}
Wi.

According to the above definition for a given time window of duration m we
can determine k-partition only when k ·(l−1)+1 = m that is m−1

k = l−1, where
l is the length of each of time windows of the obtained partition. Therefore, in
order for us to be able to determine k-partition for a given time window of the
length m, number m reduced by l has to be divisible by k, and the result of this
division is the length of the window in the partition reduced by l. Going back to
Example 26 let us notice that it is possible to determine k-partition for k = 3
for window (5, 1, 10) (where m = 10), and this is the partition into 3 windows,
each of length l = 4. They are windows: (5, 1, 4), (5, 4, 4) and (5, 7, 4). On the
other hand, for the same window (5, 1, 10) we cannot determine k-partition for
k = 4 because number m− l = 9 is not divisible by 4.

Let us notice that it is easy to construct an algorithm which for a given
time window W ∈ TW (T,m) determines the partition Partition(W,k) through
linear overview of window W in order to create k-time windows of this partition.

6.16 Algorithm of Replacing a Sequence of Time Windows with the
Sequence of Nodes of a Behavioral Graph

Each time window could be classified into a given temporal concept with the
use of stratifying classifier. Each such concept corresponds to one node of the
behavioral graph of complex object G. Hence, each sequence of time windows
may be replaced with the sequence of nodes of behavioral graph G. The prob-
lem of classification conflict of a given time window consisting in the fact that a
time window may be classified into many concepts, could be solved by choosing
a concept for which classification certainty is the highest. In other words dur-
ing classification the concept whose result layer of classification is possibly the
highest is chosen. We present an algorithm performing such an operation (see
Algorithm 6.8). However, we assume that during execution of the Algorithm 6.8
the following data structures and algorithms are available:

– T is a temporal information system,
– G = (V,E) is a behavioral graph such that V = {v1, ..., vm},
– (H,≤H) is a linearly ordered set such that H is a set of labels of concepts

layers and ≤H is a relation of linear order on the set H,
– µH

v1
, ..., µH

vm
is a family of stratifying classifiers, which are constructed for

temporal concepts corresponding to nodes v1, ..., vm ∈ V (see Algorithm 6.5).
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Algorithm 6.8: Replacing a sequence of time windows with the sequence
of nodes of a behavioral graph (MakeT imePath)
Input: A sequence of time windows S = {W1, ....,Wk} ∈ SEQ(T, l, k)
Output: The path P ∈ PATH(G) corresponding to the sequence S

Procedure MakeT imePath(S)1

begin2

Create empty list P3

for i := 1 to k do4

Select vmax ∈ V such that ∀v ∈ V : µH
v (Wi) ≤H µH

vmax
(Wi)5

Add vmax to the end of the list P .6

end7

return P8

end9

Assuming that all operations of classifiers µH
v (for v ∈ V ) applications occur-

ring in the above algorithm are executed at the constant time, then the temporal
computational complexity of the above algorithm is of order O(k ·m), where k is
the length of the sequence of time windows which is replaced and m = card(V ).

6.17 Temporal Concept for Structured Objects

Complex behaviors of structured objects could be defined on sequences of time
windows with the use of complex concepts which are called temporal concepts
for structured objects.

We assume that temporal concepts for structured objects are specified by a
human expert and are usually used in queries about the status of some structured
objects in a particular sequence of time windows. Answers to such queries can
be of the form Y es, No or Does not concern.

Intuitively each such temporal concept (defined on a sequence of time win-
dows) depends on whether there occurred behaviors defined by temporal con-
cepts for unstructured objects in the observed time windows, with those objects
being parts of structured objects. It is usually possible to provide an ontology
which shows such a dependence.

For example, temporal concept for structured objects which is a group of two
objects (vehicles) unhurried driving vehicle A after vehicle B in the right lane,
depends on such temporal concepts as: driving at stable speed, changing lanes
at constant speed, maintaining constant distance between vehicles A and B, and
others.

Temporal concepts for structured objects cannot be straightforwardly ap-
proximated by temporal concepts for single time windows because they concern
a sequence of time windows, that is, a longer period of time than temporal
concepts for time windows.
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Therefore, in order to define attributes approximating temporal concepts for
structured objects we need to introduce another language which enables us to
transfer properties of time windows onto the level of sequences of time windows.

Due to the fact that each sequence of time windows can be replaced with a
temporal path in the behavioral graph (see Section 6.16), while describing the
properties of time windows we can use temporal paths corresponding to them.
In this way, the language FTP below is constructed.

Definition 42. (A language for defining features of temporal paths)
Let G = (V, E) be a behavioral graph of complex objects of the fixed type T . A
language for defining features of temporal paths of behavioral graph G (denoted
by FTP (G) or FTP -language, when G is fixed) is defined in the following way:

• the set ALFTP (G) = V ∪ { ExistsNode, EachNode, MajorityNodes,
MinorityNodes, FirstNode, LastNode, OrderNodes } ∪ {¬,∨,∧} is an
alphabet of the language FTP (G),
• for any v, v′ ∈ V expressions of the form: ExistsNode(v), EachNode(v),
MajorityNodes(v), MinorityNodes(v), FirstNode(v), LastNode(v),
OrderNodes(v, v′) are atomic formulas of the language FTP (G).

Presently, we define the semantics of the language FTP (G). The formulas
of the language FTP (G) express properties of paths in the behavioral graph G.
For example, formula ExistsNode(v) is interpreted as description of all those
paths in the behavioral graph in which there exists node v.

Definition 43. Let G = (V,E) be a behavioral graph of complex objects of the
fixed type T . The satisfiability of an atomic formula φ ∈ FTP (G) by a temporal
path P = (v1, . . . , vk) ∈ PATH(G) (denoted by P |=FTP (G) φ), is defined in the
following way:

1. P |=FTP (G) ExistsNode(v) ⇔ ∃i∈{1,...,k} vi = v,
2. P |=FTP (G) EachNode(v) ⇔ ∀i∈{1,...,k} vi = v,
3. P |=FTP (G) MajorityNodes(v) ⇔

card({i ∈ {1, ..., k} : vi = v}) > b(k − 1)/2c,
4. P |=FTP (G) MinorityNodes(v) ⇔

card({i ∈ {1, ..., k} : vi = v}) < d(k − 1)/2e,
5. P |=FTP (G) FirstNode(v) ⇔ v1 = v,
6. P |=FTP (G) LastNode(v) ⇔ vk = v,
7. P |=FTP (G) OrderNodes(v, v′) ⇔ ∃i,j∈{1,...,k} i < j ∧ vi = v ∧ vj = v′.

Below, we provide a few examples of the FTP -language formulas.

– If node v of a certain behavioral graph of a single vehicle corresponds to
the concept of stable speed in the right lane, then formula EachNode(v)
describes a temporal path in which the vehicle drives the whole time at the
stable speed in the right lane.
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– If node v of a certain behavioral graph of a single vehicle corresponds to
the concept of accelerating in the right lane, then formula ExistsNode(v)
describes a temporal path in which the vehicle for a certain amount of time
accelerates.

– If nodes v1 and v2 of a certain behavioral graph of a single vehicle correspond
respectively to the concepts of stable velocity in the right lane and acceler-
ating in the right lane, then formula MajorityNodes(v1)∧ExistsNode(v2)
describes a temporal path in which for most of the time the vehicle drive at
the stable speed but for some time the vehicle increases speed.

Formulas of the FTP language can be used for defining temporal path features
in such a way that to each formula a temporal pattern for temporal paths can
be attached.

Definition 44. (A temporal pattern for temporal paths)
Let G = (V, E) be a behavioral graph of complex objects of the fixed type T . Each
formula of the language FTP (G) is called a temporal pattern for temporal paths
in the behavioral graph G.

We assume that any temporal pattern ought to be defined by a human expert
using domain knowledge accumulated for the given complex dynamical system.

6.18 Information System of Temporal Paths

The properties of accessible temporal paths may be represented in special infor-
mation system which is called an information system of temporal paths.

Definition 45. (An information system of temporal paths)
Let us assume that:

– G = (V,E) is a behavioral graph of complex objects of the fixed type,
– s is a fixed length of temporal paths (s > 1),
– Φ = {φ1, ..., φk} ⊆ FTP (G) is a defined by experts family of temporal pat-

terns for temporal paths (sub-language of the language FTP (G)),
– PFTP = (U,Φ, |=FTP (G)) is a property system, where U ⊆ PATH(G, s).

The information system G = (U, A) defined be the property system PFTP is
called an information system of temporal paths (TP -information system).

Evidently, construction of system G requires generating a family of temporal
paths of a fixed length. It is possible to construct an algorithm generating all
temporal paths of the established duration s from a given behavioral graph
G = (V,E) which would work in such a way that for each node v ∈ V there
would be generated all paths of the established duration s which start in the
node. If the number of edges coming out of a given node of graph G equaled no
more than r, then the number of paths generated using such an algorithm would
be pessimistically equal card(V ) ·rs−1, which in practice may be a great number
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of paths. For example, if card(V ) = 10, r = 4 and s = 10 then the number of
paths to generate equals over 2.6 million! Therefore, in practice, during system
G construction only chosen paths from the set PATH(G, s) are generated.

Although the set PATH(G, s) may be sampled, it is reasonable to assume
that in system G only those paths are taken into account which occur in the
training data. This means that in system G only such a path exists that is reg-
istered in the data for the specific complex object. Obviously, the node sequence
is not directly registered in the data, but time point sequence is registered which
may be grouped into time windows and then into sequences of time windows.
These sequences, thanks to classifiers constructed for individual temporal con-
cepts, may be changed into the node sequence from set V informing about the
membership of time windows to individual temporal concepts. The set of all
temporal paths observed in data of duration s we denote as DPATH(G, s).
For small behavioral graphs the size of the set DPATH(G, s) is comparable
with the size of the set PATH(G, s). However, for nontrivially small behavioral
graphs the size of the set DPATH(G, s) is much smaller than the size of the
set PATH(G, s). We present the algorithm of generating the set DPATH(G, s)
(see Algorithm 6.9).

Algorithm 6.9: Generating temporal paths observed in data
Input:
– temporal information system T = (U, A, aid, ≤aid

, at, ≤at) such that
U = {u1, ..., un},

– behavioral graph G = (V, E) such that V = {v1, ..., vm},
– fixed length of temporal paths s (where s > 1),
– fixed length of time windows l (where l > 1).

Output: The set DPATH(G, s)
begin1

Generate set TW := TW (T, s · (l − 1) + 1).2

Create empty list of paths DPATH.3

for all W ∈ TW do4

path := MakeT imePath(Partition(W, s))5

Add path to the list DPATH.6

end7

return DPATH8

end9

In regard to determining the set TW (T, s · (l − 1) + 1) and executions of
procedures MakeT imePath and Partition, the pessimistic time complexity of
the Algorithm 6.9 is of order O(n · log n + n · s · l + n · s ·m), where n is the
number of objects in the set U , s is the length of temporal paths, l is the length
of time windows and m = card(V ).
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Example 27. For the behavior graph from Fig. 28 an information system of tem-
poral paths may be constructed. In order to do this one may use temporal pat-
terns for temporal paths chosen from the following collection of patterns:

1. the vehicle accelerates (decelerates, maintains stable speed) in the right lane
at the first node (at the last node, at some node, at all nodes, at the minority
of nodes, at the majority of nodes) of the temporal path,

2. the vehicle accelerates and at the same time changes the lane from the right
to the left one at the first node (at the last node, at some node, at all nodes,
at the minority of nodes, at the majority of nodes) of the temporal path,

3. the vehicle decelerates (maintains stable speed) and at the same time changes
lanes from the left to the right one at the first node (at the last node, at
some node, at all nodes, at the minority of nodes, at the majority of nodes)
of the temporal path,

4. the vehicle accelerates (decelerates , maintains stable speed) in the right lane
at some node of the temporal path, and after that the vehicle accelerates
(decelerates , maintains stable speed) in the right lane at one of the following
nodes,

5. the vehicle accelerates (maintains stable speed) and at the same time changes
the lane from the right to the left one at some node of the temporal path, and
after that at one of the following nodes the vehicle decelerates (maintains
stable speed) in the right lane,

6. the vehicle decelerates (maintains stable speed) and at the same time changes
the lane from the left to the right one at some node of the temporal path, and
after that at one of the following nodes the vehicle decelerates (maintains
stable speed) in the right lane.

It is easy to notice that each of the above patterns may be expressed in language
FTP .

In approximating temporal concepts for structured objects (see Section 6.20),
it is necessary to use information systems of temporal paths which are con-
structed on the basis of behavioral graphs illustrating relation changes between
parts of structured objects. The example below shows how such an information
system for behavior graph from Fig. 30 may be constructed.

Example 28. The behavioral graph from Fig. 30 describes distance changes be-
tween parts of the structured object which is a pair of vehicles driving on the
road. For this graph the information system of temporal paths may be con-
structed using temporal patterns for temporal paths chosen from the following
collection of patterns:

1. the distance between both vehicles is short and is decreasing (is increasing,
is stable) at the first node (at the last node, at some node, at all nodes, at
the minority of nodes, at the majority of nodes) of the temporal path,
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2. the distance between both vehicles is long and is decreasing (is increasing,
is stable) at the first node (at the last node, at some node, at all nodes, at
the minority of nodes, at the majority of nodes) of the temporal path.

The choice of specific temporal patterns to construct the information system
of temporal paths depends on the temporal concept which is to be approxi-
mated using this system, obviously after performing the grouping (clustering) of
temporal paths (see Section 6.20).

6.19 Clustering Temporal Paths

The properties of temporal paths expressed using temporal patterns may be used
to approximate temporal concepts for structured objects. Frequently, however,
objects of system G are not yet suitable for their properties to describe temporal
concepts for structured objects. It happens that way because there are too many
of these objects and the descriptions of temporal paths, which they represent, are
too detailed. Hence, if applied for temporal concept approximation for structured
objects, the extension of the created classifier would be too small, that is, the
classifier could classify too small number of tested paths.

Therefore, similarly to the case of temporal concepts for time windows the
object clustering is applied which leads to obtaining the family of clusters of
temporal paths. The grouping tools are the same as in the case of time window
grouping. Therefore, to define path clusters we use the language ECTP which
similarly to the language ECTW is based on the language NL.

Definition 46. (A language for extracting clusters of temporal paths)
Let us assume that:

– G = (V,E) is a behavioral graph of complex objects of the fixed type,
– G = (U, A) is an information system of temporal paths of behavioral graph

G.

Any neighborhood language NL(G) we call a language for extracting clusters of
temporal paths from behavioral graph G (ECTP -language) and we denote it by
ECTP (G).

Formulas of the language ECTP enable to define clusters of temporal paths
from the behavioral graph.

Definition 47. (A cluster of temporal paths)
Let G = (V, E) be a behavioral graph of complex objects of the fixed type. We
call the meaning of each formula φ ∈ ECTP (G) a cluster of temporal paths of
behavioral graph G.

In the example below we illustrate how the dissimilarity function may be
defined for grouping temporal paths.
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Example 29. For the information system of temporal paths obtained with the
use of temporal patterns from Example 27, the dissimilarity function may be
constructed on the basis of expert knowledge. In order to do this, the dissimilarity
function value should be obtained from experts for a certain, i.e., the most
representative set of object pairs of this system. It should be also determined
what temporal concept is approximated using clusters obtained with the help
of the dissimilarity function being defined (see Section 6.20). It is possible to
approximate concepts defined on the set of unstructured objects as well as on
the set of structured objects. Let us assume that this is the concept concerning
the overtaking maneuver of vehicle B by vehicle A and we mean this fragment
of the overtaking maneuver when vehicle B drives in the right lane and vehicle
A while driving behind vehicle B changes the lane from the right to the left
one. In terms of this concept and knowledge about typical behaviors of vehicle
A, the expert may instantly define several groups of vehicles which, if put in
place of vehicle A, behave very similarly, that is, vehicles which are in one of
such groups in terms of the dissimilarity function which is being constructed,
should not differ significantly. For example, they may be the following groups of
vehicles:

I. vehicles which at the beginning of the temporal path drive in the right lane
and then drive off the right lane into the left one,

II. vehicles which along the whole temporal path drive in the right lane,
III. vehicles which along the temporal path drive in the left lane,
IV. vehicles which at the beginning of the temporal path drive in the left lane

and then drive off the left lane into the right one.

Let us now consider five specific vehicles which behave in the following way:

1. vehicle u1 accelerates in the right lane at the beginning of the temporal path,
and then still accelerates and commences changing lanes from the right to
the left one, but at the end of the temporal path is still not in the left lane,

2. vehicle u2 drives at a stable speed in the right lane at the beginning of the
temporal path, and then commences changing lanes from the right to the
left one at a stable speed, but at the end of the temporal path it is still not
in the left lane,

3. vehicle u3 drives at a stable speed in the right lane along the whole temporal
path,

4. vehicle u4 drives at a stable speed in the left lane at the beginning of the
temporal path, and then decelerates in the left lane,

5. vehicle u5 drives at a stable speed in the left lane at the beginning of the
temporal path, and then at a stable speed commences changing lanes from
the left to the right one, but at the end of the temporal path it is still not
in the right lane.

In Table 6 values of chosen temporal patterns for objects u1, u2, u3, u4 and
u5 are presented.
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No Temporal patterns for temporal paths u1 u2 u3 u4 u5

1. The vehicle accelerates driving in the right lane
at the first node of the temporal path

1 0 0 0 0

2. The vehicle drives at a stable speed in the right
lane at the first node of the temporal pattern

0 1 1 0 0

3. The vehicle accelerates and changes lanes from
the right to the left one at some node of the tem-
poral path

1 0 0 0 0

4. The vehicle drives at a stable speed and changes
lanes from right to the left one at some node of
the temporal path

0 1 0 0 0

5. The vehicle drives at a stable speed in the left
lane at the first node of the temporal path

0 0 0 1 1

6. The vehicle decelerates in the left lane at some
node of the temporal path

0 0 0 1 0

7. The vehicle drives at a stable speed and changes
lanes from the left to the right one at some node
of the temporal path

0 0 0 0 0

8. The vehicle decelerates and changes lanes from
the left to the right one at some node of the tem-
poral path

0 0 0 0 1

9. The vehicle drives at a stable speed in the right
lane at the last node of the temporal path

0 0 1 0 0

10. The vehicle drives at a stable speed in the left
lane at the last node of the temporal path

0 0 0 0 0

Table 6. An exemplary objects of some TP-information system
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u1 u2 u3 u4 u5

u1 0 0.1 0.4 0.4 1.0
u2 0.1 0 0.3 0.3 0.9
u3 0.4 0.3 0 0.6 0.4
u4 0.4 0.4 0.6 0 0.4
u5 1.0 0.9 0.4 0.4 0

Table 7. Values of dissimilarity function for pairs of temporal paths

It is evident that object u1 belongs to the group of vehicles I and it does
not belong to groups II, III and IV. Similarly, object u2 also belongs to group
I. The reason for this is the fact that both objects drive in the right lane first
and then drive off to the left lane, but object u2 drives at a stable speed the
whole time and object u1 accelerates. Therefore, the dissimilarity function value
for these two objects is low, that is, 0.1, whereas object u3 belongs to group
II because it drives in the right lane the whole time. That is why its behavior
differs significantly from the behavior of object u2, for object u3 only drives in
the right lane while object u2 changes lanes from the right to the left one. Hence,
the dissimilarity function value for objects u2 and u3 is larger and equals 0.3.
Object u4 belongs to group III (drives only in the left lane) and therefore its
behavior has even less in common with the behavior of object u2. Therefore, the
dissimilarity function value for the pair of objects u2 and u4 is 0.4. Finally, object
u5 belongs to group IV and its behavior differs the most from the behavior of
object u1. The reason for this is the fact that object u5 not only commences
driving in the left lane (unlike u1, which commences driving in the right lane),
but at the end of the considered temporal path u5 changes lanes from the left
to the right one, unlike u1, which changes lanes from the right to the left one.
Moreover, the object u5 decelerates, while the object u1 accelerates. Therefore,
the dissimilarity function value for the pair of objects u1 and u5 is the highest
possible and equals 1.0. Let us notice that the dissimilarity function value for the
pair of objects u2 and u5 is bit smaller (0.9) because the object u5 decelerates,
while the object u2 maintains stable speed. The dissimilarity function values for
all pairs of objects proposed by the expert are put together in Table 7. Finally,
let us notice that objects u1, u3, u4 and u5 may be treated as standards for
which the deviation is 0.1.

Now, to construct a new information system which represents the features of
clusters of temporal paths we need to define a new language.

Definition 48. (A language for definnig features of clusters of temporal paths)
Let us assume that:

– G = (V,E) is a behavioral graph of complex objects of the fixed type,
– G = (U, A) is a information system of temporal paths for behavioral graph

G.
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A language for definnig features of clusters of temporal paths for behavioral graph
G (denoted by FCTP (G) or FCTP -language, when G is fixed) is defined in
the following way:

• the set ALFCTP (G) = ALFTP (G) ∪ {ExistsPath, EachPath,
MajorityPaths, MinorityPaths} is an alphabet of the language FCTP (G),
• for any α, β ∈ FTP (G) expressions of the form: ExistsPath(α),
EachPath(α), MajorityPaths(α), MinorityPaths(α) are atomic formulas
of the language FCTP (G).

Now, we determine semantics of the language FCTP (G). The formulas of
the language FCTP (G) we interpret as a description of clusters of temporal
paths of graph G. For example, formula ExistsPath(α) is interpreted as the
description of all those clusters of temporal paths in which there exists at least
one path satisfying formula α.

Definition 49. Let G = (V,E) be a behavioral graph of complex objects of the
fixed type T . The satisfiability of an atomic formula φ ∈ FCTP (G) by a family
of temporal paths P = {P1, ...., Pk} ⊆ PATH(G) (denoted by P |=FCTP (G) φ)
is defined in the following way:

1. P |=FCTP (G) ExistsPath(α) ⇔ ∃P∈P P |=FTP (G) α,
2. P |=FCTP (G) EachPath(α) ⇔ ∀P∈P P |=FTP (G) α,
3. P |=FCTP (G) MajorityPaths(α) ⇔

card({P ∈ P : P |=FTP (G) α}) > b(k − 1)/2c,
4. P |=FCTP (G) MinorityPaths(α) ⇔

card({P ∈ P : P |=FTP (G) α}) < d(k − 1)/2e.

The patterns of the language FCTP may be applied to define the features
of clusters of temporal paths.

The example below illustrates how one may define properties of clusters of
temporal paths which are constructed using the dissimilarity function from Ex-
ample 29.

Example 30. Using the dissimilarity function from Example 29, the objects from
the information system of temporal paths from Example 27 may be grouped.
However, in order to construct an information system for the determined family
of clusters, patterns should be established which serve computing features of
clusters of temporal paths. For example, they may be the following patterns:

1. in each temporal path of the cluster vehicles first drive in the right lane and
then change lanes from the right to the left one (the pattern describes the
property of vehicles from group I from Example 29),

2. in each temporal path of the cluster vehicles drive only in the right lane ( the
pattern describes the property of vehicles from group II from Example 29),
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3. in each temporal path of the cluster vehicles first drive in the left lane and
then change lanes from the left to the right one (the end of the overtaking
maneuver),

4. in each temporal path of the cluster there exists a node at which vehicles
drive in the left lane,

5. in the majority of temporal paths of the cluster there occurs no deceleration,
6. in the majority of temporal paths of the cluster vehicles drive at a stable

speed the whole time.

It is easy to notice that each of the above patterns may be expressed in language
FCTP .

The choice of specific patterns to construct the information system of the
temporal path clusters depends on the concept which is to be approximated
with the help of this system (see Section 6.20).

Clusters of temporal paths are represented by the information systems which
we call an information system of clusters of temporal paths.

Definition 50. (An information system of clusters of temporal paths)
Let us assume that:

– G = (V,E) is a behavioral graph of complex objects of the fixed type,
– ψ1, ..., ψn ∈ ECTP (G) is a defined by experts family of temporal patterns

corresponding to clusters of temporal paths CL1, ..., CLn,
– Φ = {φ1, ..., φm} ⊆ FCTP (G) is a defined by experts family of features of

clusters of temporal paths,
– PFCTP = (U,Φ, |=FCTP (G)) is a property system, where U = {CL1, ..., CLn}.

The information system G = (U, A) defined be the property system PFCTP is
called an information system of clusters of temporal paths (CTP -information
system).

Evidently, constructing system G requires generating clusters of temporal
paths in such a way that it would be possible to check the ability to satisfy
the formulas of the language FCTP (G). Such clusters may be generated by the
linear search in the table G and assigning objects of this table to individual
clusters.

Algorithm 6.10 presented bellow determines for a given temporal path the
list of feature values of the cluster to which the tested temporal path belongs.
Therefore, this algorithm is important for testing temporal paths. We assume
that during execution of the Algorithm 6.10 the following data structures are
available:

– a behavioral graph G = (V, E) of complex objects of a fixed type,
– a fixed length s of temporal paths in the behavioral graph G,
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– a family of temporal patterns φ1, ..., φm ∈ FTP (G)) and a system G =
(U, A) such that attributes from the set A correspond to formulas φ1, ..., φm,

– a dissimilarity function DISMG of object pairs from the system G, approx-
imated using the stratifying classifier µDISMG

,
– a family of temporal patterns ψ1, ..., ψn ∈ ECTP (G) such that ψi = (stdi, εi)

(for i = 1, ..., n) and a system G = (U,A) such that objects from the set U

correspond to clusters described by formulas ψ1, ..., ψn and A = {a1, ..., ak}.

Algorithm 6.10: Computation features of cluster to which the tested tem-
poral path belongs
Input: temporal path P = (v1, . . . , vs) ∈ PATH(G).
Output: The list of feature values of the cluster to which the tested

temporal path P belongs

Procedure GetClusterRow(P )1

begin2

Create empty list row3

for φ1, ..., φm do4

if P |=FTP (G) φi then5

Add ’1’ to the end of the list row6

else7

Add ’0’ to the end of the list row8

end9

end10

Create new object urow of the system G on the basis values of11

attributes from the list row.
Select a formula ψ = (std, ε) ∈ {ψ1, ..., ψn) such that:12

1. urow |=FCTP (G) ψ and13

2. DISMG(urow, std) = mini∈{1,...,n}{DISMG(urow, stdi)}14

Select object uψ ∈ U corresponding to the formula ψ15

Create empty list clusterRow16

for i = 1 to k do17

clusterRow := clusterRow + ai(uψ)18

end19

return clusterRow20

end21

Assuming that all operations of checking the satisfiability of formulas for a
given path and computing values of dissimilarity function (occurring in the above
algorithm) are carried out at the constant time, then the temporal computational
complexity of the above algorithm is of order O(m+n+k) where m is the number
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of used temporal path features, n is the number of clusters of temporal paths,
and k is the number of features of clusters of temporal paths.

6.20 Temporal Concept Table for Structured Objects

CTP -information systems constructed for different unstructured objects may be
joined in order to obtain information systems describing features of structured
objects. We obtain objects of such a system by arranging (joining) all possible
objects of information systems being joined. From the mathematical point of
view such an arrangement is the Cartesian product of sets of objects of joined
information systems (see [33, 269–271]). In this way we obtain an information
system that may be used to approximate concepts for structured objects (see
Definition 52). However, from the point of view of domain knowledge not all
mentioned above object arrangements are possible and sensible. For example, if
we approximate the concept of overtaking performed by two vehicles (overtaking
and overtaken ones), then it is sensible to link the three following path clusters:

1. the first path cluster (coming from the behavior graph of the overtaking
vehicle) describes a sequence of vehicle behaviors which behave in the same
way as the overtaking vehicle (e.g., accelerate and change lanes from the
right to the left one),

2. the second path cluster (coming from the behavior graph of the overtaken
vehicle) describes a sequence of vehicle behaviors which behave in the same
way as the overtaken vehicle (e.g., drive with a stable speed in the right
lane),

3. the third path cluster (coming from the behavior graph describing relation
changes between the overtaking and overtaken vehicle) describes a sequence
of behaviors of such vehicles pairs that the relations determined between
them change in a way connected with overtaking (e.g., the distance between
vehicles decreases rather quickly).

For the above reason, that is, to eliminate object arrangements which are
unreal or are not sensible, a relation of constraints is formulated which informs
which objects may be arranged in order to obtain positive or negative example
of approximated concept (for structured objects) and which cannot be arranged.
The relation of constraints we define in the form of the formula of the language
GDL.

Definition 51. (An information system of clusters of temporal paths for struc-
tured objects)
Let us assume that:

– Gi = (Vi, Ei) is a behavioral graph of complex objects of the fixed type Ti,
for i = 1, ..., k,

– Gi = (U i, Ai) is a CTP -information system for behavioral graph Gi, for
i = 1, ..., k,
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– GR = (VR, ER) a behavioral graph representing changes of relations between
parts of structured objects, where such parts are objects of types T1, ..., Tk,

– GR = (UR, AR) is a CTP -information system for behavioral graph GR,
– G⊗ = (U⊗, A⊗) is an information system, where:

• U⊗ = U1 × . . .× Uk × UR,
• A⊗ = A1 ∪ . . . ∪ Ak ∪ AR, where attributes from sets A1, ..., Ak, AR are

natural extension of attributes from sets A1, ..., Ak, AR on the set U⊗,
– Φ ∈ GDL(G⊗) is a formula of constraints.

An information system of clusters of temporal paths for structured objects (SCTP -
information system) is an information system Gon = (Uon, Aon), where:

– Uon = {u ∈ U⊗ : u |=GDL(G⊗) Φ},
– Aon = A⊗, i.e., the set Aon contains all attributes from the set A⊗, that are

restricted to Uon.

The notion of information system Gon may be used to approximate concepts
for structured objects. In order to do this it is sufficient to add a decision at-
tribute to this system which describes the approximated concept. We assume
that for each arrangement of objects accepted by constraints (satisfying the for-
mula of constraints), the expert adds the decision value informing about whether
a given arrangement belongs to the approximated concept of the higher level or
not.

Now, the definition of a temporal concept table for structured objects may
be presented.

Definition 52. (A temporal concept table for structured objects)
Let us assume that:

– Gon = (Uon, Aon) is an information system of clusters of temporal paths for
structured objects,

– C ⊆ Uon is a temporal concept for structured objects.

A temporal concept table for structured objects for the concept C is a decision
table GC

on = (Uon, Aon, dC), where the decision attribute dC is representing mem-
bership of objects from the set Uon to the concept C.

As we already mentioned, the relation of constraints is defined as a formula in
the language GDL (see Definition 5) on the basis of attributes of the table G⊗.
However, the relation of constraints may also be approximated with the help of
classifiers. It is required, in such a case, to give examples of objects belonging and
not belonging to this relation, that is, satisfying and not satisfying the formula
Φ corresponding to this relation (see [33]).

Example 31. In Fig. 32 there is presented a construction scheme of temporal
concept table for structured objects consisting of two vehicles, i.e., an overtaking
vehicle (vehicle A) and an overtaken vehicle (vehicle B). Any object of this table
is represented by a triple of clusters (P (A)

i , P
(B)
i , P

(R)
i ) for i ∈ {1, ..., card(Uon)},

where:
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Fig. 32. The scheme of the temporal concept table of structured objects (two
vehicles during the overtaking maneuver)

– P
(A)
i denotes the cluster of overtaking vehicles,

– P
(B)
i denotes the cluster of overtaken vehicles,

– P
(R)
i denotes the cluster of pairs of both vehicles.

Attributes describing the clusters of overtaking and overtaken vehicles, e.g.,
clusters P

(A)
i and P

(B)
i are constructed as presented in Example 30. They de-

scribe rather general behaviors of individual vehicles observed during the se-
quence of time windows. Whereas, the attributes describing cluster P

(R)
i de-

scribe the properties of both vehicles (A and B) in terms of relation changes
between these vehicles. During observing vehicles during the overtaking maneu-
ver the most important thing is to observe the distance changes between these
vehicles (see Example 28). Therefore, to describe the properties of P

(R)
i clusters

the following patterns may be applied:

1. in each temporal path of the cluster, at the majority of nodes the distance
between A and B is short and is still decreasing,

2. in each temporal path of the cluster there exists a node at which the distance
between A and B is long,
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3. in each temporal path of the cluster at the majority of nodes the distance
between A and B is short and is increasing,

4. in the majority of temporal paths of the cluster there exists a node at which
the distance between A and B is long and it is decreasing, and after it
there exists a node at which the distance between A and B is short and is
decreasing,

5. in each temporal path of the cluster and at all the nodes of these paths the
distance between A and B is short.

The information system obtained in such a way may be enriched with the
decision attribute which describes the membership of individual clusters of time
windows to the established temporal concept for the group of both vehicles
(e.g., it may be the concept: vehicle B drives in the right lane and vehicle A
while driving behind vehicle B changes the lane from the right to the left one). In
this way we obtain a decision table which may serve the approximation of this
concept.

It is worth noticing that the attribute created on the basis of the last of the
above mentioned patterns may be used to construct the constraint formula. If
we build the constraint formula based on this attribute, then the clusters joints
representing vehicles which are at a long distance are eliminated from the system
G⊗. Such cluster joints are not useful for differentiating pairs of vehicles which
drive close to each other and are involved in the overtaking maneuver from those
pairs of vehicles which also drive close to each other, but they are not involved
in the overtaking maneuver.

A question arises, how it is possible that the expert may propose the decision
value related to the membership to system Gon. To make this decision the expert
has at his or her disposal attribute values from the set Aon. They are attributes
proposed earlier by the expert as features of clusters of temporal paths. The
expert is able to propose them in such a way that he/she may now use them
successively to determine the membership of the whole clusters to concept C. In
other words cluster features must be defined in such a way that they could serve
to determine the membership of clusters of time paths to temporal concept C.

If E = {e1, ..., el} is a family of layer labels of concept C, then for table GC
on

stratifying classifier µE
C may be constructed. This classifier enables classifying

structured objects to concept C.

6.21 Classification of Structured Objects

In this section, we present an algorithm which allows to answer the question
whether the behavior of structured objects observed in a sequence of time win-
dows belongs to a given temporal concept defined for structured objects.

Stratifying classifier µE
C constructed for table GC

on enables the classification
of structured objects to concept C. However, it may be applied for the tested
object which is the arrangement of clusters of temporal paths of the behavioral
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graph for complex objects being parts of the examined structured object and
clusters of temporal paths of the behavioral graph describing relation changes
between the parts of the examined structured object. That is why it is necessary
to construct earlier a suitable object (like in the table GC

on) in order to test of
structured object. We present the algorithm of structured object classification.
However, we assume that during execution of the Algorithm 6.5 the following
elements are available:

– a test c-temporal information system TTS−P ,
– a sweeping algorithm SA around objects from systems TTS−P ,
– a test c-temporal information system TTS−R representing features of rela-

tions between parts of structured objects determined by the algorithm SA,
– a formula of constraints Φ ∈ GDL(G⊗),
– a concept C defined by experts in the set Uon, representing some feature of

structured objects of a fixed type T , where any object of the type T consists
of parts, that are objects of types T1, ..., Tk,

– a temporal concept table GC
on for the concept C, constructed using the for-

mula of constraints Φ,
– a linearly ordered set (H,≤H) such that H is a set of labels of concepts

layers and ≤H is a relation of linear order on the set H,
– a stratifying classifier µH

C constructed for the concept C on the basis the
table GC

on.

The Algorithm 6.11 works as follows. On the input of the algorithm there is a
description given of the behavior of a certain structured object, in the form of se-
quences of time windows: S1, ..., Sk, Sk+1 which describe the behavior of a part of
this object (sequences: S1, ..., Sk) and the relation changes between the parts of
this object (the sequence Sk+1). Next, on the basis of the sequences of time win-
dows obtained on the input and with the usage of algorithms MakeT imePath
and GetClusterRow, there is created a new object urow which has the structure
of objects from the G⊗ table. Next, it is checked whether object urow satisfies
the constraints expressed by formula Φ. If it happens this way, then object urow

is classified by the stratifying classifier µH
C , otherwise the algorithm returns the

information that it cannot classify the behavior of the complex object whose
description is given on the input of the algorithm.

Assuming that the operation of examining the satisfiability of formula Φ and
the operation of classification with the help of classifier µH

C may be performed
in constant time and considering the complexity of procedures MakeT imePath
and GetClusterRow, the pessimistic time complexity of the Algorithm 6.11 is of
order O(k ·s ·m+k ·npf +k ·nc +k ·ncf ), where k is the number of parts of which
the examined structured objects consist, s is the length of each S1, ..., Sk, Sk+1

sequences, m is the maximum number of nodes from the behavior graphs of
individual parts of structured objects, npf is the maximum number of features
used to define path properties in behavior graphs, nc is the maximum number of
path clusters in behavior graphs and ncf is the maximum number of the applied
features of such clusters.
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Algorithm 6.11: Structured object classification to the temporal concept
Input: Family of sequences of time windows S1, ..., Sk, Sk+1 describing

behavior of a given structured object, where Si ∈ SEQ(TTS−P ),
for i = 1, ..., k and Sk+1 ∈ SEQ(TTS−R)

Output: Information about the membership of the observed structured
object to the concept C

begin1

Create empty list row2

for i := 1 to k + 1 do3

path := MakeT imePath(Si) (see Algorithm 6.8)4

pRow := GetClusterRow(path) (see Algorithm 6.10)5

Add pRow to the end of the list row6

end7

Create new object urow of the system G⊗ on the basis values of8

attributes from the list row.
if urow 6|=GDL(G⊗) Φ then9

return “Has nothing to do with”10

else11

return µH
C (urow)12

end13

end14

6.22 Behavioral Graphs for Structured Objects

Analogously to the case of temporal concepts for unstructured complex objects,
temporal concepts defined for structured objects may also be treated as nodes of
a certain directed graph that we call a behavioral graph for a structured object.
One can say, that the behavioral graph for a structured object expresses temporal
dependencies on a higher level of generalization than the behavioral graph on
lower level, i.e., the behavioral graph for unstructured objects.

Definition 53. (A behavioral graph for a structured object)

1. A behavioral graph for a structured object G is an ordered pair (V, E), where
V is a nonempty and finite set of nodes (temporal concepts for structured
objects) and E is a set of directed edges E ⊂ V × V (connections represent
temporal dependencies between temporal concepts for structured objects).

2. A temporal path in the behavioral graph G = (V, E) is a sequence of nodes
v1, ..., vl such that for any i ∈ {1, ..., l− 1} an edge (vi, vi+1) ∈ E. A number
l is called a length of temporal path v1, ..., vl.

3. A family of all temporal paths with length l (l > 0) in the behavioral graph
G is denoted by PATH(G, l).

Bellow we present an example of behavioral graph for a structured object.
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Example 32. In Fig. 33, we present exemplary behavioral graph for a structured
object, that is a group of two vehicles: vehicle A and vehicle B, related to the
standard overtaking maneuver. There are 6 nodes in this graph representing
the following temporal concepts: vehicle A is driving behind B on the right lane,
vehicle A is changing lanes from right to left, vehicle A is moving back to the right
lane, vehicle A is passing B when A is on the left lane and B is on the right lane,
vehicle A is changing lanes from left to right and vehicle A is before B on the
right lane. There are 7 connections representing spatio-temporal dependencies
between temporal concepts from nodes. For example, after the node Vehicle A
is driving behind B on the right lane the behavior of these two vehicles matches
to the node (temporal concept) Vehicle A is changing lanes from right to left
and B is driving on the right lane.

1. Vehicle A is
 behind B on the right lane

2. Vehicle A is changing
lanes from right to left,

vehicle B is driving on the
right lane

3. Vehicle A  is moving back
to the right lane,

vehicle B is driving on the
right lane

4. Vehicle A is driving on
the left lane and

A is passing B (B is
driving on the right lane)

6. Vehicle A is before B on
the right lane

5. Vehicle A is changing
lanes from left to right,

vehicle B is driving on the
right lane

 

Fig. 33. A behavioral graph for the maneuver of overtaking

6.23 Behavioral Patterns

Both the behavioral graph for an unstructured object and the behavioral graph
for a structured object may be used as a complex classifier enabling the identifi-
cation of the behavioral pattern described by this graph. It is possible based on
the observation of the behavior of a unstructured object or a structured object
over a longer period of time and testing if the behavior matches the chosen path
of the behavioral graph. If this is the case, it is stated that the behavior matches
behavioral pattern represented by this graph which enables detecting particular
behaviors in a complex dynamical system.

In result, we can use a behavioral graph as a complex classifier for perception
of the complex behavior of unstructured or structured objects. For this reason,
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a behavioral graph constructed for some complex behavior is called a behavioral
pattern.

We present a detailed algorithm of behavioral pattern identification (see Al-
gorithm 6.12). However, we assume that during execution of the Algorithm 6.12
the following elements are available:

– a test c-temporal information system TTS−P ,
– a sweeping algorithm SA around objects from system TTS−P ,
– a test c-temporal information system TTS−R representing features of rela-

tions between parts of structured objects determined by the algorithm SA,
– a behavioral graph G = (V, E) of structured objects of a fixed type T deter-

mined by the algorithm SA such that V = {v1, ..., vm},
– a linearly ordered set (H,≤H) such that H is a set of labels of concepts

layers and ≤H is a relation of linear order on the set H,
– a family of stratifying classifiers µH

v1
, ..., µH

vm
constructed for concepts corre-

sponding to nodes v1, ..., vm ∈ V.

The way of working Algorithm 6.12 is the following. On the input there is a
description given of the behavior of a certain structured object, in the form of
sequences of time windows: S1, ..., Sk, Sk+1 which describe the behavior of a part
of this object (sequences: S1, ..., Sk) and the relation changes between the parts
of this object (sequence Sk+1). The length of these sequences is established and
equals z · s, where z is a fixed natural number and s is the length of sequences
of time windows needed to identify a single temporal concept for structured
objects. Further, for the all subsequence families of the length s isolated from
the input sequences, stratifying classifiers are applied constructed for concepts
corresponding to all nodes of behavior graph G. Thus, it is possible to chose
such a node for each subsequence family that the classifier corresponding to it
classifies the subsequence family to the possibly lowest layer (if there are more
such nodes the choice among them is nondeterministic). The chosen node is
put at the end of the path represented using the path list. After choosing the
node of graph G for all subsequence families and what follows completing the
path list, the return of decision value occurs which tells us whether the examined
structured object matches the behavioral pattern represented by graph G or not.
Namely, the Y ES decision is returned when the list path is a path in graph G,
otherwise the NO value is returned.

The above algorithm is able to classify a given structured object only when
all subsequence families isolated from the input family of the sequence of time
windows may be classified. However, this is possible only when each subsequence
family is classified at least by one of the stratifying classifiers available for nodes
from set V.

Let us notice that in terms of computational complexity the time cost of
executing the Algorithm 6.12 is equal, with an accuracy of constant, the sum
of costs of (z ·m)-times execution of Algorithm 6.11, where z is the number of
the subsequences of the length s into which the input sequences are divided and
m = card(V).
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Algorithm 6.12: Behavioral pattern identification
Input: Family of sequences of time windows S1, ..., Sk, Sk+1 describing

behavior of a given structured object, where:
– Si ∈ SEQ(TTS−P ), for i = 1, ..., k and Sk+1 ∈ SEQ(TTS−R),
– Length(Si) = z · s, where z is a natural number and s is a length of

sequences of time windows used for identification of temporal concepts
for structured objects, for i = 1, ..., k + 1.

Output: The binary information (YES or NO) about matching the
observed structured object to the behavioral pattern
represented by the graph G

begin1

Create empty list path2

for i := 0 to z − 1 do3

SS1 := Subsequence(S1, i · s + 1, (i + 1) · s)4

...5

SSk := Subsequence(Sk, i · s + 1, (i + 1) · s)6

SSk+1 := Subsequence(Sk+1, i · s + 1, (i + 1) · s)7

vmax := v18

layermax := µH
v1

(SS1, ..., SSk, SSk+1)9

for j := 2 to m do10

layer := µH
vj

(SS1, ..., SSk, SSk+1)11

if layermax ≤H layer then12

layermax := layer13

end14

end15

Add vmax to the end of the list path.16

end17

if path ∈ PATH(G, z) then18

return YES19

else20

return NO21

end22

end23
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Example 33. Let us study the behavioral graph presented in Fig. 33 for a group
of two objects-vehicles (vehicle A and vehicle B) related to the standard over-
taking maneuver. We can see that the path of temporal concepts with indexes
“1, 2, 3, 1, 2, 4” matches a path from this behavioral graph, while the path with
indexes: “6, 5, 4” doesn’t match any path from this behavioral graph (this path
can match some other behavioral patterns).

A path of temporal patterns (that makes it possible to identify behavioral
patterns) should have a suitable length. In the case where the length is too short,
it may be impossible to discern one behavioral pattern from another pattern.
For example, we can make a mistake between an overtaking and a passing by a
vehicle in traffic.

6.24 Discovering Rules for Fast Elimination of Behavioral Patterns

In this section, we present how the method of behavioral patterns identification
presented in Section 6.23 can be speeded up using special decision rules. Let us
assume that we have a family of behavioral patterns BP = {b1, ..., bn} defined
for structured objects (or parts of a given structured object). For any pattern bi

from the family BP one can construct a complex classifier based on a suitable
behavioral graph (see Section 6.23) that makes it possible to answer the question:
“Does the behavior of the investigated structured object (or the part of a struc-
tured object) match the pattern bi?”. The identification of behavioral patterns
of any structured object is performed by investigation of a sequence of time win-
dows registered for this object during some period (sometimes quite long). This
registration of time windows is necessary if we want to avoid mistakes in iden-
tification of the investigated structured object. However, in many applications,
we are forced to make a faster (often in real-time) decision if some structured
object matches the given behavioral pattern. In other words, we would like to
check the investigated structured object at once, that is, using the first or second
time window of our observation only. This is very important from the compu-
tational complexity point of view, because if we investigate complex dynamical
systems, we usually have to investigate many structured objects. Hence, faster
verification of structured objects can help us to optimize the process of searching
among structured objects matching the given behavioral pattern.

The verification of complex dynamical systems consisting of some structured
objects can be speeded up by using some special decision rules, that are computed
by an Algorithm 6.13 (see also Fig. 34).

Any decision rule computed by the Algorithm 6.13 expresses a dependency
between a temporal concept and the set of behavioral patterns that are not
matching this temporal concept. Such rules can make it possible to exclude very
quickly many parts of a given complex object as irrelevant for identification of a
given behavioral pattern. This is possible because these rules can be often applied
at once, that is after only one time window of our observation. Let us consider
a very simple illustrative example. Assume we are interested in the recognition
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Algorithm 6.13: Discovering decision rules for fast elimination of behav-
ioral patterns
Input:
– c-temporal information system T,
– a family of behavioral patterns BP = {b1, ..., bn} defined for structured

objects or parts of structured objects.

Output: Decision rules for fast elimination of behavioral patterns from
the family BP

1. Define a family of temporal concepts TC = {t1, ..., tm} that have
influence on matching investigated structured objects to behavioral
patterns from family BP (defined on the basis of information from
time windows from the set TW (T)).

2. Construct classifiers for all temporal concepts from TC using the
method from Section 6.9.

3. For any temporal concept ti from the family TC create a decision table
DTi, that has the following structure:
(a) any row of the table DTi is constructed on the basis of information

registered during a period that is typical for the given temporal
concept ti,

(b) the condition attribute b of table DTi registers the index of
behavioral pattern from the family BP (the index computation is
based on observation that any complex classifier from BP can check
for the investigated structured objects if there is a sequence of time
windows matching the given behavioral pattern and starting from a
given time window),

(c) the decision attribute of the table DTi is computed on the basis of
values returned by classifier constructed for ti in previous step.

4. Compute decision rules for DTi using methods of discretization by
attribute values grouping (see Section 2.2).
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Fig. 34. The scheme of rules extraction for the fast elimination of behavioral
patterns from data tables

of overtaking that can be understood as a behavioral pattern, defined for the
group of two vehicles. Using the methodology presented above, we can obtain
the following decision rule:

– If the vehicle A is overtaking B then the vehicle B is driving
on the right lane.

After applying the transposition law, we obtain the following rule:

– If the vehicle B is not driving on the right lane then the
vehicle A is not overtaking B.

The last rule (see also Fig. 35) allowing fast verification whether the inves-
tigated structured object (two vehicles: A and B) is matching the behavioral
pattern of overtaking.

 

B

A

If the vehicle B is not driving on the 
right lane then the vehicle A is not 
overtaking B. 
 

Fig. 35. The illustration of the decision rule for fast elimination of behavioral
pattern

Of course, in case of the considered complex dynamical system, there are
many other rules that can help us in the fast verification of structured objects
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related to the overtaking behavioral pattern. Besides, there are many other be-
havioral patterns in this complex dynamical system and we have to calculate
rules for them using the methodology presented above.

The presented method, that we call the method for on-line elimination of non-
relevant for a given behavioral pattern parts of complex object (ENP method [30,
29]), is not a method for behavioral pattern identification. However, this method
allows to eliminate some paths of a given complex object behavior that are not
relevant for checking if this object matches a given behavioral pattern. After
such elimination the complex classifiers based on a suitable behavioral graphs
should be applied to the remaining complex objects.

6.25 Experiments with Road Simulator Data

To verify the effectiveness of classifiers based on behavioral patterns, we have
implemented the algorithms from the Behavioral Patterns library (BP-lib), which
is an extension of the RSES-lib 2.1 library forming the computational kernel of
the RSES system (see [252, 253]). Our experiments have been performed on the
data sets obtained from the road simulator (see Appendix A) and on the medical
data sets. In this section we report results of experiments preformed on the data
sets obtained from the road simulator. Results obtained for the medical data
sets are presented in Section 6.26.

In the case of experiments on the data sets obtained from the road simulator,
we have applied the train-and-test method. A training set consisted of about
17 thousands objects generated by the road simulator during one thousand of
simulation steps. Whereas, a testing set consisted also of about 17 thousands
objects collected during another (completely different) session with the road
simulator.

In our experiments, we compared the quality of three classifiers: rough set
classifier with decomposition (RS-D), Behavioral Pattern classifier (BP) and Be-
havioral Pattern classifier with the fast elimination of behavioral patterns (BP-
ENP).

For induction of RS-D, we employed RSES system generating the set of min-
imal decision rules by algorithm LEM2 (see Section 2.4) that are next used for
classification of situations from the testing data. However, we had to use the
method of generating decision rules joined with a standard decomposition al-
gorithm from the RSES system (see Section 2.7). This was necessary because
the size of the training table was too large for the direct generation of deci-
sion rules. The classifiers BP is based on behavioral patterns (see Section 6.23),
whilst BP-ENP are based on behavioral patterns too but with application of fast
elimination of behavioral patterns related to the investigated group of objects
(see Section 6.24).

In application of BP and BP-ENP methods the distance between time points
was constant, that is time points were recorded after each stage of the simulation.
The prediction of temporal concepts for individual vehicles was performed on
the basis of time windows whose duration equals 3 time points, whereas the
prediction of temporal concepts for pairs of vehicles was performed on the basis
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Decision class Method Accuracy Coverage Real accuracy
Yes RS-D 0.875 ± 0.050 0.760 ± 0.069 0.665 ± 0.038

(overtaking) BP 0.954 ± 0.033 1.000 ± 0.000 0.954 ± 0.033
BP-ENP 0.947 ± 0.031 1.000 ± 0.000 0.947 ± 0.031

No RS-D 0.996 ± 0.001 0.989 ± 0.003 0.985 ± 0.001
(no overtaking) BP 0.990 ± 0.004 1.000 ± 0.000 0.990 ± 0.004

BP-ENP 0.990 ± 0.004 1.000 ± 0.000 0.990 ± 0.004
All classes RS-D 0.993 ± 0.002 0.980 ± 0.004 0.973 ± 0.002
(Yes + No) BP 0.988 ± 0.003 1.000 ± 0.000 0.988 ± 0.003

BP-ENP 0.988 ± 0.003 1.000 ± 0.000 0.988 ± 0.003

Table 8. Results of experiments for the overtaking pattern

of sequence of time windows whose duration was equal 2. Finally, the behavioral
pattern was recognized on the basis of vehicle observation over 2 sequences of
time windows, that is on the basis of vehicle observation over 4 time windows.
The tested object for the analyzed behavioral pattern was, thus, the sequence of
9 successive time points. Therefore, classifier RS-D used the table whose objects
were sequences of 9 successive time points, whereas the attributes gave the values
of sensor attributes for all these points. The value of decision attribute was given
by the expert in the same manner for all three classification methods.

We compared RS-D, BP, and BP-ENP classifiers using the accuracy, the
coverage, the real accuracy, the accuracy for positive examples (the sensitivity
or the true positive rate), the coverage for positive examples, the real accuracy
for positive examples, the accuracy for negative examples (the specificity or the
true negative rate), the coverage for negative examples and the real accuracy for
negative examples (see Section 2.9).

In order to determine the standard deviation of the obtained results each
experiment was repeated for 10 pairs of tables (training table + testing table).
Therefore, 20 tables in total were applied (collected during 20 completely differ-
ent sessions with the road simulator).

Table 8 shows the results of applying these classification algorithms for the
concept related to the overtaking behavioral pattern.

One can see that in the case of perception of the overtaking maneuver (de-
cision class Yes) the accuracy and the real accuracy of algorithm BP are higher
than the accuracy and the real accuracy of algorithm RS-D for the analyzed data
set. Besides, we see that the accuracy of algorithm BP-ENP (for decision class
YES) is only 0.7 percent lower than the accuracy of algorithm BP. Whereas, the
algorithm BP-ENP allows us to reduce the time of perception, because during
perception we can usually identify the lack of overtaking earlier than in the al-
gorithm BP. This means that it is not necessary to collect and investigate the
whole sequence of time windows (that is required in the BP method) but only
some first part of this sequence. In our experiments with the classifier BP-ENP
it was enough to use on average 59.7%±1.5% percent of the whole time window
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sequence for objects from the decision class No (the lack of overtaking in the
sequence of time windows). However, it should be stressed that this result con-
cerns only identification of vehicle groups which were preliminarily selected by
the sweeping algorithm (see Section 6.13), whereas in comparison with the num-
ber of time windows needed to analyze all possible two-element vehicle groups, in
using the sweeping algorithm and BP-ENP method the number of analyzed time
windows constitutes only 2.3%± 0.1% of the number of time windows needed to
analyze all 2-element vehicle groups.

6.26 Risk Pattern Identification in Medical Data: Case Study

An identification of some behavioral patterns can be very important for identifi-
cation or prediction of behavior of a complex dynamical system, especially when
behavioral patterns describe some dangerous situations. In this case, we call such
behavioral patterns risk patterns and we need some tools for their identification.
If in the current situation some risk patterns are identified, then the control
object (a driver of the vehicle, a medical doctor, a pilot of the aircraft, etc.) can
use this information to adjust selected parameters to obtain the desirable be-
havior of the complex dynamical system. This can make it possible to overcome
inconvenient or unsafe situations. For example, a very important element of the
treatment of the infants with respiratory failure is the appropriate assessment of
the risk of death. The appropriate assessment of this risk leads to the decision of
particular method and level of treatment. Therefore, if some complex behavior
of an infant that causes a danger of death is identified, we can try to change
her/his behavior by using some other methods of treatment (may be more rad-
ical) in order to avoid the infant’s death. In this section we describe how the
presented approach in previous sections can be applied to identification of the
infants’ death risk caused by respiratory failure (see Appendix B). In this ap-
proach, a given patient is treated as an investigated complex dynamical system,
whilst diseases of this patient (RDS, PDA, sepsis, Ureaplasma and respiratory
failure) are treated as complex objects changing and interacting over time.

It is also worthwhile mentioning that the research reported in this section is
a continuation, in some sense, of the previous research on the survival analysis
(see [25, 26, 32]).

Medical Temporal Patterns. As we wrote before (see, e.g, Section 6.4), the
concepts concerning the properties of complex objects at the current time point
in connection with the previous time point are a way of representing very simple
behaviors of the complex objects. These concepts, that we call elementary con-
cepts, usually characterize a status of sensor’s values. In the case of our medical
example (the treatment of the infants with respiratory failure), we can distin-
guish the following elementary concepts such as low value of FiO2 (the percent
concentration of oxygen in the gas entering the lungs), increase in FiO2 , decrease
in PaO2 (the arterial oxygen tension), decrease in PaO2/FiO2, low creatinine
serum (blood) level. However, a perception of more complex behaviors requires
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identification of elementary concepts over a longer period called a time window
(see Section 6.6). Therefore, if we want to predict such more complex behaviors
or discover a behavioral pattern, we have to investigate elementary concepts reg-
istered in the current time window. Such investigation can be expressed using
temporal patterns. For example, in the case of the medical example one can
consider patters expressed by following questions: “Did PaO2/FiO2 increase in
the first point of the time window?”, “Was PaO2/FiO2 stable in the time win-
dow?”, “Did the PaO2/FiO2 increase before the closing of PDA?” or “Did the
PaO2/FiO2 increase before a PaO2/FiO2 decrease occurred?”. Notice that all
such patterns ought to be defined by a human, medical expert using domain
knowledge accumulated for the respiratory failure disease.

Behavioral Graph for a Disease. The temporal patterns can be treated
as new features that can be used to approximate temporal concepts (see Sec-
tion 6.6). In the case of the treatment of infants with respiratory failure one can
define temporal concepts such as “Is the infant suffering from the RDS on level
1?”, “Was an multi-organ failure detected?”, or “Is the progress in multi-organ
failure on level 4?”.

Temporal concepts defined for objects from a complex dynamical system
and approximated by classifiers, can be treated as nodes of a graph called a
behavioral graph (see Section 6.11), where connections between nodes represent
temporal dependencies. Fig. 36 presents a behavioral graph for a single patient
exhibiting a behavioral pattern of patient by analysis of the organ failure caused
by sepsis. This graph has been created on the basis of observation of medical
data sets (see Appendix B) and the SOFA scale (Sepsis-related Organ Failure
Assessment) (see [327, 126] for more details).

In this behavioral graph, for example, connections between node “Progress in
multi-organ failure on level 1” and node “Progress in multi-organ failure on level
3” indicates that after some period of progress in organ failure on level 1 (rather
low progressing), a patient can change his behavior to the period, when progress
in organ failure is high. In addition, a behavioral graph can be constructed for
different kinds of diseases (like RDS, PDA, Ureaplasma) (see Appendix B) or
groups of diseases represented for example by the respiratory failure (see Fig. 37).

Medical Risk Pattern. The temporal concepts defined for structured objects
and approximated by classifiers, are nodes of a new graph, that we call a be-
havioral graph for a structured object (see Section 6.22). In Fig. 37, we present
an exemplary behavioral graph for group of four diseases: sepsis, Ureaplasma,
RDS and PDA, related to the behavior of the infant during high death risk
period due to respiratory failure. This graph has been created on the basis of
observation of medical data sets (see next subsection) and with support of med-
ical experts. There are 16 nodes in this graph and 21 connections represented
spatio-temporal dependencies between temporal concepts from nodes. For exam-
ple, after the node “Stabile and mild respiratory failure in sepsis” the behavior
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Fig. 36. A behavioral graph of sepsis by analyzing the multi-organ failure

of patient can match the node “Exacerbation of respiratory failure from mild to
moderate in sepsis”.

This behavioral graph is an example of risk pattern. We can see that the
path of temporal patterns: (“Stable and mild respiratory failure in sepsis”, “Ex-
acerbation of respiratory failure from mild to severe in sepsis”, “Stable and
severe respiratory failure in sepsis”) matches a path from this behavioral graph,
while the path: (“Stable and severe respiratory failure in sepsis”, “Exacerbation
of respiratory failure from moderate to severe in sepsis”, “Stable and moder-
ate respiratory failure in sepsis”) doesn’t match any path from this behavioral
graph.

Experiments with Medical Data. In this section we present results of exper-
iments performed for obtained from Neonatal Intensive Care Unit, First Depart-
ment of Pediatrics, Polish-American Institute of Pediatrics, Collegium Medicum,
Jagiellonian University, Krakow, Poland. The data were collected between 2002
and 2004 using computer database NIS, i.e, Neonatal Information System (see
[246]). The detailed information about treatment of 340 newborns are available
in the data set, such as perinatal history, birth weight, gestational age, lab tests
results, imagine techniques results, detailed diagnoses during hospitalization,
procedures and medication were recorded for the each patient. The study group
included prematurely born infants with the birth weight ≤ 1500g, admitted to
the hospital before end of the 2 day of life. Additionally, the children suffer-
ing from the respiratory failure but without diagnosis of RDS, PDA, sepsis or
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Fig. 37. A behavioral graph of the infant during high death risk period due to
respiratory failure

Ureaplasma infection during their entire clinical course were excluded from the
study group (193 patients stayed after the reduction).

In our experiments, we used one data table extracted from the NIS system,
that consists of 11099 objects. Each object of this table describes parameters of
one patient in single time point.

The aim of conducted experiments was to check the effectiveness of the algo-
rithms described in this paper in order to predict the behavioral pattern related
to a high risk of death of infants. This pattern was defined by experts (see
Fig. 37). It is worth adding that as many as 90.9% of infants whose behavior
matched this pattern died shortly after (this fact results from a simple analysis
of medical data set which were gathered).

As a measure of classification success (or failure) we use: the accuracy, the
coverage, the real accuracy, the accuracy for positive examples (the high risk of
death), the coverage for positive examples, the real accuracy for positive exam-
ples, the accuracy for negative examples (the low risk of death), the coverage for
negative examples and the real accuracy for negative examples (see Section 2.9).
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We have applied the train-and-test method. However, because of the speci-
ficity of the analyzed data the method of data division differed slightly from the
standard method. Namely, in each experiment the whole patient set was ran-
domly divided into two groups (training and testing one). The same number of
patients belonged to each of these groups, at the same time patients who died
and those who survived were divided separately. In other words, in each of two
groups the number of dead patients and those who survived was the same. This
division of data was necessary because the correlation between patient’s death
and the fact of matching patient’s behavior the considered behavioral pattern
is very strong. Obviously, the information about whether the patient died or
survived the treatment was not available during learning and testing process of
classifiers.

In the discussed experiments the distance between time points recorded for a
specific patient was variable, that is, various time points of different frequencies
were recorded in the data over different periods of time. For instance, if pa-
tient’s condition was serious, then quite often (e.g., every two hours) parameters
representing his or her condition were registered and recorded for this patient,
whereas if the patient’s condition was good and stable, then the information
about this patient was recorded rather rarely (e.g., once a day). In relation to
this, although the prediction of temporal concepts for individual disease (RDS,
PDA, sepsis, Ureaplasma) was always performed on the basis of time windows
having 2 time points, then in practice these windows had very different temporal
durations. This way, the duration of time windows was in a certain way deter-
mined by experts. However, the prediction of temporal concepts for respiratory
failure was performed on the basis of the sequence of time windows whose dura-
tion was equal 2. Finally, the pattern of high death risk was recognized on the
basis of patient observation for 3 sequences of time windows that is on the basis
of observation over 6 time windows. A tested object for the analyzed behavioral
pattern was, therefore, the sequence of 7 successive time points.

As a result of the above mentioned division of patients into training and
testing ones, each of these parts made it possible to create approximately 6000
time windows having duration of 7 time points. Time windows created on the
basis of training patients created a training table for a given experiment, while
time windows created on the basis of tested patients created a test table for the
experiment.

In order to determine the standard deviation of the obtained results each
experiment was repeated for 10 random divisions of the whole data set.

Table 9 shows the results of applying this algorithm for the concept related
to the risk pattern of death due to respiratory failure. Together with the results
we present a standard deviation of the obtained results.

Notice, that the accuracy of decision class Yes in medical statistics (see [3]
and Section 2.9) is called a sensitivity (the proportion of those cases having a
true positive test result of all positive cases tested), whereas the accuracy of
decision class No is called a specificity (the proportion of true negatives of all
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Decision class Accuracy Coverage Real accuracy
Yes (the high risk of death) 0.994 ± 0.008 1.0 ± 0.000 0.994 ± 0.008
No (the low risk of death) 0.938 ± 0.012 1.0 ± 0.000 0.938 ± 0.012

All classes (Yes + No) 0.958 ± 0.010 1.0 ± 0.000 0.958 ± 0.010

Table 9. Results of experiments for the risk pattern of death due to respiratory
failure

the negative samples tested). We see both main parameters of our classifier (i.e.,
sensitivity and specificity) are sufficiently high.

Experimental results showed that the suggested method of behavioral pat-
terns identification gives good results, also in the opinion of medical experts
(compatible enough with the medical experience) and may be applied in med-
ical practice as a supporting tool for infants suffering from respiratory failure
monitoring.

Some results of our experiments on medical data were surprising even for
medical experts (e.g., very low frequency of fatal cases in infants with Ure-
aplasma infection). Therefore, one can say that our tools were useful for devel-
opment of new interesting observation and experience.

Finally, let us notice that the specific feature of the methods considered
here is not only high accuracy (with low standard deviation) but also very high
coverage (equal 1.0).

7 Automated Planning Based on Data Sets and Domain
Knowledge

Behavioral patterns described in Section 6 may be very useful for effective com-
plex dynamical systems monitoring, particularly when certain behavioral pat-
terns are connected to undesirable behaviors of complex objects. If during the
observation of complex dynamical system such a pattern is identified then the
control module may try to change, using appropriate actions, the behavior of the
system in such a way as to get the system out of an uncomfortable or dangerous
situation. However, these types of short-term interventions may not be sufficient
for a permanent rescuing the system out of an undesirable situation. There-
fore, very often the possibility of using some methods of automated planning is
considered.

Automated planning is a branch of artificial intelligence that concerns the
realization of strategies or action sequences (called as plans), typically for ex-
ecution by intelligent agents, autonomous robots and unmanned vehicles, that
can change their environment (see, e.g., [100, 260, 337]). The essential inputs for
planning are an initial world state, a repertoire of action for changing that world,
and a set of goals. The purpose of plan is to achieve one or more goals. The form
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of the plan is commonly just a linear sequence of actions or acyclic directed
graph of actions.

In the case of the control of complex dynamical systems, automated gener-
ated plans can be used to carry out a given complex object to more comfortable
or safer situation (see, e.g., [16, 17, 100, 127, 254, 337]). Such plans may be per-
formed by (or on) unstructured objects or structured objects, i.e., by each part
of any structured object separately with a presence of complete synchronization
of actions performed by (or on) individual parts of the structured object).

7.1 Classical Algorithms of Automated Planning

Classical planning algorithms can be classified according to how they structure
the search space. There are three very common such classes, like: state space
planners, plan space planners and planners encoding the planning problem as a
problem of some other kind (see, e.g., [100–102, 121, 254]).

State Space Planners. In the first class of classical planning algorithm are
very early planners, e.g., STRIPS (see [90]), and some successful recent planners,
like Graphplan (see [50]). These algorithms are based on searching in the state
space, where such searching is most often done either by forward-chaining, i.e.,
searching from the initial state to the goal state, or by backward-chaining, i.e.,
searching from the goal state to the initial state (see, e.g., [100, 121, 254] for more
details).

Plan Space Search. In the second class of planning algorithms are causal link
planners and constraint-based planners (see, e.g., [254]). In this case, the plan
space consists of incomplete plans, which, in contrast to the notion of plan in the
state space view, do not have to be sequences or actions or sets of parallel actions.
One alternative is to view the plan as a partially ordered set of actions. The
potential advantage of this view is that one partially ordered set can represent
many linear plans, and that the planner needs only to enforce the orderings that
are absolutely necessary, whereas in a linear plan, many action orderings are
quite arbitrary (see, e.g., [100, 121, 254] for more details).

Encoding Planning as a Different Problem. A third class of classical plan-
ners encode the planning problem as a problem of some other kind and solve this
problem. This approach was first used in SATPLAN (see, e.g, [86, 121, 135–137])
which converts the planning problem instance into an instance of the Boolean
satisfiability problem, which is then solved using a method for establishing satis-
fiability such as the DPLL algorithm or WalkSAT (see, e.g., [99]). Other methods
of planning in which the planning problem has been encoded as a problem of
some other kind are methods based on a linear programming (see, e.g., [59, 95])
or using constraint satisfaction problems (CSP) (see, e.g., [42]).
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7.2 Domain Dependent Automated Planning

Planning applications in practice may be large and involve complicated actions,
but they commonly also have a great deal of structure, known to people experi-
enced with the domain. There are many potential plans that are (to the human
domain expert) obviously useless, and sometimes simple criteria can be found
for sifting out the “promising” partial solutions. If this knowledge is encoded
and given to the planner, it should help to speed up the process of finding a
plan. This idea leads to what is called “domain-dependent planning”.

There are many planning methods which use domain knowledge. At this
section we briefly discuss a few most widely known exemplary approaches, that is
the planning with learning, the planning with time, the planning with incomplete
information, the hierarchical task network planning and the domain-dependent
search control.

Learning in Planning. Generally speaking, machine learning techniques can
be used to extract useful knowledge, from solutions to similar problem instances
in the past or from previous failed attempts to solve the present problem in-
stance. This has been used to improve planning efficiency and to improve plan
quality (see, e.g., [100, 121] for more details). For instance, two of the earliest
systems to integrate machine learning and planning are SOAR (see, e.g., [147,
280]), a general cognitive architecture for developing systems that exhibit intel-
ligent behaviour, and PRODIGY, an architecture that integrates planning and
learning in its several modules (see, e.g., [323, 324]).

The approach to automated planning presented in this paper may also be
included into the approaches integrating methods of machine learning with clas-
sical planning. However, there are significant differences between methods known
from literature and methods presented in this paper (see Section 7.3 for more
details).

Planning with Time. In classical planning actions are assumed to take “unit
time”. This assumption is not critically important, as long as there is no deadline
to meet and one does not try to optimize the actual execution time. An early
planner to deal with actions of different duration and goals with deadlines is
Deviser (see [326]). It is based on the idea of partial-order planning, in which the
simple partial order over the actions in the plan are replaced by more complex
constraints on their starting and ending times. The idea has been picked up
in several later planners (see, e.g., [100, 121, 254] for more details). Recently,
temporal planning has become a very active area of research, and almost every
classical planning approach has been adapted to deal with durative actions.

Planning with Incomplete Information. Another assumption made by most
planners is that all relevant information is available in the problem description,
and that the effects of actions are perfectly predictable. There have been several
approaches to relaxing this assumption, by introducing probabilistic information.
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The probabilistic information has been used with state space planners, partial-
order planners but most of all in the form of Markov Decision Problems (see,
e.g., [100, 121, 254] for more details).

Hierarchical Task Network Planning. Hierarchical Task Network (HTN)
planning (see, e.g., [100, 256, 311]) is like classical planning in that each state of
world is represented by set of atoms, and each action corresponds to determin-
istic state transition. However, HTN planners differ from classical planners in
what they plan for and how they plan for it. In an HTN planner, the objective is
not to achieve a set of goals but instead to perform some set of tasks. The input
to the planning system includes a set of operators similar to those of classical
planning and also a set of methods. Each of which is a prescription for how to
decompose some task into some set of subtasks (smaller tasks). Planning pro-
ceeds by decomposition non-primitive tasks recursively into smaller and smaller
subtasks, until primitive tasks are reached that can be performed directly using
the planning operators (see [100, 121] for more details).

Domain-Dependent Search Control. Many search-based planners allow the
speciation of domain-dependent heuristics and rules for controlling and reducing
search. For example, two recent planners, TLPlan (see [314]) and TALplanner
(see [73, 308]) depend entirely on domain-specific search control, given in the
form of logical formulas.

7.3 Automated Planning for Complex Objects

In the all aforementioned approaches to automated planning for complex objects,
it is assumed that we know the current state of the complex object, which results
from a simple analysis of current values of this object’s available parameters. In
other words the state of the complex object may be directly read from the values
of its parameters or from a simple analysis of dependencies between these values.
For example, if we consider a classic blocks world problem (see, e.g., [6, 254])
which consists in planning the way of arranging available blocks on the table to
make a determined construction, the state of the object is the information about
the current placement of the blocks; and at the same time while planning the
arrangement the answers to the three following questions are taken into account.

1. Is a given block lying directly on the table?
2. Is another block lying on a given block?
3. Is another specific block lying on a given block?

For example, for the state in which there are three blocks available: A, B
and C where blocks B and C are lying directly on the table and block A is lying
on block B (initial state from Fig. 38), the description of such a state could be
described in a natural language with the help of the five following facts:

1. block A is lying directly on the table,
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2. block B is lying directly on the table,
3. block C is lying on block A,
4. there is no block on block C,
5. there is no block on block B.

Let us notice that in the above example concerning arranging a predeter-
mined construction out of blocks, the description of the current state can be
directly read from the information about the current values of their parameters,
that is, from the information about the arrangement of blocks in relation to
the table and other blocks. In the meantime, in complex dynamical system the
state of the complex object is often expressed in a natural language using vague
spatio-temporal conditions whose authenticity cannot be checked on the basis
of a simple analysis of the available information on the object. For example,
while planning treatment the condition of an infant who suffers from respiratory
failure may be described by the following condition.

– Patient with RDS type IV, persistent PDA and sepsis with mild internal
organs involvement (see Appendix B for mor medical details).

Stating the fact that a given patient is in the above condition requires the
analysis of the examination result of this patient registered over a certain period
of time with a great support of domain knowledge deriving from experts (medical
doctors). Conditions of this type can be represented by complex concepts and
the identification of the condition is a check if the analyzed objects belong to this
concept or not. However, the identification of such states requires approximation
concepts representing them with the help of classifiers using data sets and domain
knowledge. In a few next sections we describe the automated planning method
for unstructured complex objects whose states are described using this type of
complex concepts.
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7.4 Planning Rules and Planning Graphs

The basic concept used in this paper for automated planning is a planning rule.
It is a simple tool for modeling changes of the states of complex objects as a
result of applying (performing) actions.

Definition 54. (A planning rule)
Let S be the set of complex objects’ states of the fixed type T and set A be the
set of actions whose application causes the complex objects to change state from
one to another. Each expression of the form: (sl, a) → sr1 |sr2 . . . |srk

, where
sl, sr1 . . . srk

∈ S and a ∈ A is called a planning rule of complex object of type
T . Moreover, expression (sl, a) is called a predecessor of the planning rule and
expression sr1 |sr2 . . . |srk

is called a successor of the planning rule.

Such rule can be used to change the state sl of a complex object, using the
action a to some state from the right hand side of a rule. But the result of
applying such a rule is nondeterministic, because there are usually many states
on the right hand side of a planning rule.

Example 34. Let us consider the planning rule from Fig. 39. This is the planning
rule for treating RDS (respiratory distress syndrome) obtained from domain
knowledge (see Appendix B). The rule may be applied when RDS with very
severe hypoxemia is present. The application of the rule consists in performing
a medical action utilizing the respirator in the MAP3 mode (see Example 36
for more medical details). As an effect of the application of this action at the
following time point of observation (e.g., the following morning) the patient’s
condition may remain unchanged or improve so as to reach the condition of
RDS with severe hypoxemia.

RDS with severe 
hypoxemia 

RDS with very severe 
hypoxemia

Mechanical ventilation 
MAP3 mode

RDS with very severe 
hypoxemia

 

Fig. 39. The medical planning rule

Let us notice that there exists a certain similarity between the planning rules
presented in the subsection and planning operators known from literature (see,
e.g., [100]). Similarly to the planning rule each operator describes an action
which may be performed on a given complex object. However, each planning
operator may have many initial conditions of its execution and many effects of
its execution expressed with the help of a family of logical conditions which are
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to be satisfied after creating the operator. Whereas, in the approach described
in this paper all initial conditions of executing a given planning rule are repre-
sented using one state which is a complex spatio-temporal concept which requires
approximation. Similarly, the effects of planning rule performance are also rep-
resented using states which require approximation, which also distinguishes the
presented approach from the methods known from literature.

A more complex tool, used to model changes of the states of complex objects
as a result of applying action, is a planning graph whose paths describe such
changes.

Definition 55. (A planning graph)

1. A planning graph for objects of a fixed type is an ordered triple PG =
(S,A, E), where S is a nonempty and finite set of states, A is a nonempty
and finite set of actions and E ⊆ (S×A)∪ (A×S) is a set of directed edges.

2. If PG = (S,A, E) is a planning graph, then any k-element sequence (v1, ..., vk)
of elements from the set S ∪ A such that k > 1 and (vi, vi+1) ∈ E for
i ∈ {1, ..., k − 1}, is called a path in the planning graph PG.

3. A family of all paths with length k in the planning graph PG is denoted
by PATH(PG, k), while a family of all paths in the planning graph PG is
denoted by PATH(PG).

4. Any path p′ = (vi, ..., vj) ∈ PATH(PG, j − i + 1) created by removing
from the path p = (v1, ..., vk) ∈ PATH(PG, k) elements v1, ..., vi−1 and
vj+1, ..., vk, where i, j ∈ {1, ..., k} and i < j, is called a sub-path of the path
p and is denoted by Subpath(p, i, j).

Let us notice, that from the point of view of automata theory the planning
graph is an nondeterministic finite automata in which the automata’s states are
states from the planning graph, the automata’s alphabet is the set of actions
from the planning graph and the transfer function is described by the edges of
the planning graph.

Such paths in the planning graph are of a particular meaning for the process
of automated planning. They tell us how it is possible to bring complex objects
from the given state to another given state using actions. Therefore, these types
of paths is called plans.

Definition 56. (A plan in a planning graph)
Let PG = (S, A, E) be a planning graph.

1. Any path (v1, ..., vk) ∈ PATH(PG, k) is called a plan in the planning graph
PG if and only if k > 2 and v1, vk ∈ S.

2. A family of all plans with length k in the planning graph PG is denoted
by PLAN(PG, k), while a family of all plans in the planning graph PG is
denoted by PLAN(PG).

3. If p = (v1, ..., vk) ∈ PLAN(PG, k), then any sub-path Subpath(p, i, j) such
that vi, vj ∈ S, is called a sub-plan of the plan p and is denoted by
Subplan(p, i, j).
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Below, we present an example which illustrates such concepts as: a planning
graph, a path in the planning graph and a plan in the planning graph.

Example 35. Let us consider planning graph PG = (S, A, E) such that S =
{s1, s2, s3, s4}, A = {a1, a2, a3} and E = {(s1, a1), (s1, a2), (s2, a3), (s3, a3),
(a1, s1), (a1, s3), (a1, s4), (a2, s1), (a2, s2), (a3, s4), (a3, s2), (a3, s3)}. This graph
is presented in Fig. 40 where the states are represented using ovals, and actions
are represented using rectangles. Each link between the nodes of this graph
represents a time dependencies. For example, the link between state s1 and action
a1 tells us that in state s1 of the complex object action a1 may be performed,
whereas the link between action a1 and state s3 means that after performing
action a1 the state of the complex object may change to s1. An example of a
path in graph PG is sequence (a2, s2, a3, s4) whereas path (s1, a2, s2, a3, s3) is
an exemplary plan in graph PG.

 

Fig. 40. An exemplary planning graph

Having the concept of the planning graph defined, the so-called planning
problem may be defined which works in the way that for a given initial state it
should be proposed such a sequence of nodes from the planning graph that brings
the initial state to the expected target state. Formally, the planning problem in
the elementary version may be depicted in this way.

Problem. The planning problem
Input:

– planning graph PG = (S, A, E),
– initial state si,
– target state st.

Output: Plan p = (v1, ..., vk) ∈ PLAN(PG) such that v1 = si and vk = st.

Fig. 41 presents a solution to the problem of finding a plan bringing state s1

to state s4 in the planning graph from Example 35.
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Fig. 41. The output for the planning problem

The planning graph may be obtained through linking available planning rules,
and in order to obtain a planning graph through linking planning rules belonging
to a given family of planning rule F , the four following steps should be performed:

1. create a set of states S as a sum of all states which occur in the predecessors
and successors of rules of family F ,

2. create a set of actions A as a sum of all actions which occur in the rules of
family F ,

3. create a set of edges E as a sum of all pairs (s, a) for which there exists such
a rule in family F that s is the predecessor of this rule and a is an action
occurring in this rule,

4. add all the pairs (a, s) to set E for which there exists such a rule in family
F that a is the action occurring in this rule and s occurs in the successor of
this rule.

In Fig. 42 we present how the three following rules:

– (s1, a1) → s1|s2,
– (s1, a2) → s1|s2,
– (s2, a1) → s1|s2,

may be linked to make a planning graph.
Let’s notice that it exists an essential difference between the behavioral graph

(see Definition 35 and Definition 53), and the planning graph (see Definition 55).
There is one kind of nodes in the behavioral graph only, representing properties of
behavior of complex objects during certain period (e.g., time window). Whereas,
there are the following two kinds of nodes in the planning graph, namely, states of
complex objects (registered in a time point) and actions, that can be performed
on complex objects during some period (e.g., time window). Hence, the main
application of behavioral graphs is to represent observed properties of complex
objects, while the main application of planning graphs is to represent changes
of object’s parameters in the expected direction.
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Fig. 42. From planning rules to a planning graph

Similarly, there exists a certain similarity here between planning graphs
known from literature and planning graphs defined in this paper. It works in
the way that in both approaches there occur states, actions and links between
them. However, the planning graph known from literature (see, e.g., [100]) is con-
structed in order to plan the sequence of actions for the established initial state
and its construction is aimed at this particular state. Moreover, the construction
of this graph is layered and individual layers are connected with the next steps
of the plan under construction. However, in this paper the planning graphs are
constructed in order to depict the whole knowledge (all possible actions together
with their results) concerning the behavior planning of complex objects. Apart
from that, there is a difference in understanding states of complex objects (nodes
of planning graphs). In approaches known from literature the state of a complex
object may be read directly from the values of its parameters or from a simple
analysis of dependencies between these values. However, in the approach pre-
sented in this paper the state of the complex object is described in a natural
language with the help of complex concepts which require approximation (see
the beginning of Subsection 7.3).

There also exists a similarity between the concept of the planning graph (see
Definition 55) and C/E–systems well known from literature (see, e.g., [44]). The
similarity is that both graphs look very similar: the states from the planning
graph correspond to the conditions from C/E–system and actions from the be-
havioral graphs correspond to the events from the C/E–system. However, it
should be emphasized here that the interpretation of both graphs is significantly
different. In the case of C/E–systems the dynamics of the real system modeled
by the net is based on the simulating an occurrence of an event but a given
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event might have taken place only when all the conditions from which the arches
are led to a given event are satisfied. Apart from that, after the occurrence of a
given event all conditions, to which the arches of a given event are transferred,
are satisfied. It happens differently in the case of the planning graph. The action
may be performed when the complex object is in one of the initial states of a
given action, that is, in one of the states from which the arches are transferred to
this action (complex object may not be simultaneously in more than one states).
Similarly, after the performance of the action the complex object goes to one
exit state of a given action, which also differentiates significantly the planning
graph from C/E–systems. Besides, there is another important difference. In the
case of C/E–systems, conditions have a local character, whilst in the case of the
planning graph, states have a global character.

7.5 Identification of the Current State of Complex Objects

At the beginning of planning the behavior of the complex object based on a given
planning graph, the initial state of this object should be determined. In other
words, one of the states occurring in the planning graph should be located in
which there is the complex object under examination. In this paper, each state
of the planning graph is treated as a spatio-temporal complex concept and to
recognize such a state we propose the two following approaches:

1. ask an expert from a given domain to indicate the appropriate state in which
there is a given complex object,

2. treat the state as a temporal concept and use methods of temporal concept
approximation described in Section 6.

The first of the above possibilities is very convenient, because it does not
require the construction of any algorithms. It has, however, a very important
drawback: the engagement of an expert in the functioning of the planning system
may be too absorbing. However, in some cases the application of this method is
possible and sensible. For example, in hospital conditions the current condition
of a patient may be determined by an experienced doctor or negotiated by a
group of experienced doctors at the established times of the day (e.g., in the
morning and in the evening), whereas through the remaining time of the day
the treatment of the patient conducted by the doctor on duty may be supported
by the planning system and its performance assumes the initial condition of the
patient determined by a group of doctors and suggests further treatment.

The second possibility of recognition of the current state of the complex
object is treating the state as a temporal concept and using methods of its ap-
proximation described in Section 6; and at the same time the interpretation of
such a concept is slightly different from the one which appeared in Section 6.
In Section 6, the temporal concept described the behavior of a complex object
over a certain period of time (time window). Here, however, the temporal con-
cept represents the consequences of the complex object’s behavior over a certain
period of time, that is, the current state of a complex object (at a time point).
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We assume that to determine the state of a complex object at a time point,
the observation of this object is necessary over a certain period of time (time
window). For example, to determine the fact that the patient’s condition is very
serious, it is often not sufficient to determine what his current medical param-
eters are (e.g., the results of a clinical interview or his/her laboratory results),
but it is necessary to observe how the medical parameters of the patient have
changed recently and how the patient’s organism reacts to specific treatment
methods. It may happen that the patient’s medical parameters are very bad,
but the application of the typical treatment method causes a sudden and per-
manent improvement. A crucial modification of methods of temporal concept
approximation in the case of state approximation is the usage of information
about actions performed on the complex object. This information may be easily
introduced to these methods in the form of additional conditional attributes of
the c-temporal information system.

Therefore, using methods from Section 6 a stratifying classifier may be con-
structed for each state, which for a given complex object, provides the degree to
which this object belongs to a given state. Next, all these classifiers are linked in
order to obtain a general aggregating classifier which recognizes the state of the
complex object. Such an aggregating classifier is called a state identifying clas-
sifier. The performance of the state identifying classifier consists in its choosing
such a state for the tested complex object that the stratifying classifier corre-
sponding to this state provided the highest degree of membership for the tested
complex object.

7.6 Language of Features of Paths of Planning Graphs

In the further part of the section, we construct information systems whose ob-
jects are the paths in the planning graphs and the attributes are the properties
(features) of these paths. Therefore, currently we define the FPPG-language in
which we express features of paths of planning graphs.

Definition 57. (A language for defining features of paths in planning graphs)
Let PG = (S, A,E) be a planning graph and let N be a set of natural num-
bers. A language for defining features of paths in planning graphs (denoted by
FPPG(PG) or FPPG-language, when PG is fixed) is defined for the planning
graph PG in the following way:

• the set ALFPPG(PG) = (2S \ ∅) ∪ (2A \ ∅) ∪ N ∪ (0, 1] ∪ { Exists,
Each, Occurence, F irst, Last, Order } ∪ {¬,∨,∧} is an alphabet of the
language FPPG(PG),
• atomic formulas of the language FPPG(PG) are constructed in the follow-
ing way:
1. for any pair of non-empty sets X, Y ⊆ S, l, r ∈ N and t ∈ (0, 1],

expressions of the form First(X, l, r), Last(X, l, r), Exists(X, l, r),
Each(X, l, r), Occurence(X, l, r, t), Order(X, Y, l, r) are atomic formu-
las of the language FPPG(PG),
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2. for any pair of non-empty sets B,C ⊆ A, l, r ∈ N and t ∈ (0, 1],
expressions of the form First(B, l, r), Last(B, l, r), Exists(B, l, r),
Each(B, l, r), Occurence(B, l, r, t), Order(B,C, l, r) are atomic formu-
las of the language FPPG(PG),

3. for any pair of non-empty sets X ⊆ S and B ⊆ A, l, r ∈ N and t ∈
(0, 1], expressions of the form Order(X, B, l, r) and Order(B,X, l, r) are
atomic formulas of the language FPPG(PG).

Currently, we determine the semantics of the language FPPG(PG). Each
formula of the language FPPG(PG) is treated as the description of a set of
paths belonging to the set PATH(PG).

Definition 58. Let PG = (S, A,E) be a planning graph. The semantics of the
language FPPG is defined in the following way:

1. for any non-empty set X ⊆ S, numbers l, r ∈ {1, ..., k} (where l < r) and
t ∈ (0, 1):
– |Exists(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i∈{l,...,r} vi ∈ X},
– |Each(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∀i∈{l,...,r} if vi ∈ S then vi ∈ X},
– |First(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vl ∈ X},
– |Last(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vr ∈ X},
– |Occurence(X, l, r, t)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) :
card({i ∈ {l, ..., r} : vi ∈ X})
card({i ∈ {l, ..., r} : vi ∈ S}) ≥ t},

2. for any non-empty set B ⊆ A, l, r ∈ {1, ..., k} (where l < r) and t ∈ (0, 1):
– |Exists(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i∈{l,...,r} vi ∈ B},
– |Each(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∀i∈{l,...,r} if vi ∈ A then vi ∈ B},
– |First(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vl ∈ B},
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– |Last(X, l, r)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : vr ∈ B},

– |Occurence(X, l, r, t)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) :
card({i ∈ {l, ..., r} : vi ∈ B})
card({i ∈ {l, ..., r} : vi ∈ A}) ≥ t},

3. for any sets X, Y , B, C (where X,Y ⊆ S and B, C ⊆ A) and l, r ∈ {1, ..., k}
(where l < r):
– |Order(X, Y )|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ X ∧ vj ∈ Y },

– |Order(B, C)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ B ∧ vj ∈ C},

– |Order(X, B)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ X ∧ vj ∈ B},

– |Order(B, X)|FPPG(PG) =

{(v1, ..., vk) ∈ PATH(PG) : ∃i,j∈{l,...,r}, i<j vi ∈ B ∧ vj ∈ X}.

Below, we provide several examples of formulas of the language FPPG con-
structed for the planning graph from Example 35.

– Formula First({s2}, 1, 4) describes the path whose first state from the node
number 1 to node number 4 is state s2. This is for example path (s2, a3, s3,
a3, s3).

– Formula Exists({s2}, 2, 5) describes the path in which, from node num-
ber 2 to node number 5 there exists state s2. This is for example path
(s1, a2, s2, a3, s3, a3).

– Formula Exists({s2, s3}, 2, 7) describes the path in which, from node number
2 to node number 5 there exists state s2 or state s3 or both of them. There are
for example paths: (s1, a2, s2, a3, s3, a3, s2, a3), (s1, a1, s3, a3, s3, a3, s3, a3, s3)
or (s1, a2, s1, a2, s2, a3, s2, a3, s2).

– Formula Each({a3}, 1, 5) describes the path, in which from node number 1 to
node number 5 there is only action a3. This is for example path (s2, a3, s3, a3, s2).

– Formula Occurence({s2}, 3, 7, 0.6) describes the path, in which from node
number 3 to node number 7, at least 60% of all states constitute state s2.
This is for example path number (s1, a2, s2, a3, s3, a3, s2, a3, s4).

– Formula Order({a2}, {a3}, 2, 7) describes the path, in which from node num-
ber 2 to node number 7, firstly action a2 is performed and then action a3.
This is for example path (s1, a2, s2, a4, s3, a3, s3).
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– Formula Order({a2}, {s3}, 2, 7) describes the path, in which from node num-
ber 2 to node number 6, firstly action a2 is performed and then state s3 is
observed. This is for example path (s1, a2, s1, a4, s2, a3, s3).

Patterns of the language FPPG may be applied in defining the path prop-
erties in the planning graph. Owing to this each path in the planning graph
may be represented using the values of its features. It enables approximation
of the concepts determined in the set of paths with the help of classifiers (see
Section 7.7).

7.7 Resolving Table

As we mentioned before, the output for the planing problem for a single complex
object is a path in the planning graph from the initial node-state to the expected
(target) node-state (see Fig. 41).

However, in the planning graphs there often appears a problem of non-
deterministic choice of one of the actions possible to apply in a given state. For
example, in the graph from Fig. 40 action a1 or a2 may be performed in state s1.
Apart from that, there also occurs the uncertainty concerning the choice of the
state after applying the action. For example, in the graph from Fig. 40 in state
s1 after applying action a2 the complex object may change to state s2 or remain
in state s1. That is why there may be usually many solutions to a given planning
problem consisting in going from the initial state to the target state on different
paths in the graph. Assuming that we always treat all actions and states in the
same way and the choice of actions in a given state and the choice of the state af-
ter applying the action is random or directed using a heuristic function onto the
target state, then to solve the planning problem one may use planning methods
known from literature such as: forward search, backward search or heuristic for
state-space search, which in fact would consist in searching the planning graph
(see, e.g., [100, 337]).

However, in practice there often occurs such a situation that the automati-
cally generated plan must be compatible with the plan suggested by an expert
(e.g., the treatment plan should be compatible with the plan suggested by hu-
man experts from a medical clinic). Therefore, it is strongly recommended that
the method of the verification and evaluation of generated plans should be based
on the similarity between the generated plan and the plan proposed by human
experts (see Section 7.21). Apart from that we need tools which during the gen-
erating the automatic plan may be used to solve the conflicts occurring between
actions which may be used at a given planning stage in such a way as to make
this choice compatible with domain knowledge provided by the experts. Such
tools should work on the basis of the current state of the tested complex object
and on the basis of information about the previously observed states of the tested
complex object as well as on the basis of information about actions performed
earlier on this object. In other words, while choosing the action needed to per-
form in a given state of the complex object one has to use information about
the sequence of states and actions which have led the object under examination
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to the current state. In terms of the planning graph such information is simply
a path of an established length k in this graph, which ends in the current state
of the complex object under examination. In practice, for a given state from the
planning graph there exist very many different paths which end exactly with that
state. That is why in constructing tools allowing choosing actions on the basis
of the path in the planning graph preceding the current state of the complex
object, one should use the available data sets gathered during the observation of
the complex dynamical systems. So far, we have used temporal information sys-
tems to represent such data sets. However, in the temporal information system
the actions performed on the complex objects are not represented in an overt
way although they may obviously be represented using the established attribute.
Therefore, we define a certain particular type of a temporal information system
which is called a temporal information system with actions.

Definition 59. (A temporal information system with actions)
A temporal information system with actions is a seven-element tuple:

T = (U,A, aid,≤aid
, at,≤at

, ac),

where a tuple (U,A, aid,≤aid
, at,≤at) is the temporal information system and

ac ∈ A is a distinguished attribute in the set A different from attributes aid

and at, which is an attribute identifying the action performed at a time point
represented by a given object of system T.

Thus, in the temporal information system with actions for each object of this
system u ∈ U (at a time point of this system) the action performed at this point
is remembered and it is action ac(u).

Let us notice that we consider here one action performed on the complex
object at a given time point. However, it seems that in practical applications, at
a given time point a sequence of actions could be performed synchronically on the
complex object. However, they are always actions chosen from the established
set of single actions. Therefore, the action performed at a given time point may
be treated as a subset of the established set of single actions. For example, if
M = {m1,m2,m3,m4} is a set of medicaments which may be used during the
treatment of a certain illness, then an example of a specific action of the patient’s
treatment is action {m1,m3} which consists in giving the patient medicine m1

and m2 simultaneously. Apparently, other actions are also possible. For example,
action {m1,m2, m3, m4} is the action of giving all possible medicaments. While,
action { } (empty set) is the action of not giving any medicament.

For temporal information system with actions, one can speak about states
in which there are individual objects of this system. We mean here the states
specified in a planning graph. However, the identification of the state of a given
time point requires application of the classifier constructed specially for this
purpose (see Section 7.5).

If it is possible to identify the current state of the examined object and the
actions performed at individual time points are known, then it is possible to
represent the history of the examined complex object arranged as a path from
the planning graph observed in a given temporal information system.
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Definition 60. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at

, ac) is a temporal information system with
actions,

– PG = (S, A, E) is a planning graph,
– s ∈ S is a fixed state,
– k is a fixed plan length in the planning graph PG.

1. Any plan p = (v1, ..., vk) ∈ PLAN(PG, k) is called a plan occurring in
system T if exists such a time window W = (u1, ..., ul) ∈ TW (T, l) such
that l = k−1

2 + 1) and at the successive time points of this window there
occur states v1, v3, v5..., vk and at the time points from u1, ...., ul−1 actions
v2, v4, ..., vk−1 are performed respectively. For a given plan p such a time
window is called a time window of this plan.

2. A set of all time windows of a given plan p in system T is denoted by
TW (T, p).

3. A set of all plans, occurring in system T of the length k is denoted by
DPLAN(T,PG, k).

4. A set of all plans, occurring in system T and ending with state s and of the
length k, is denoted by DPLAN(T,PG, s, k).

Let us notice that set DPLAN may be determined in such a way that firstly
a set of all time windows for a given temporal information system is determined
(see Section 6.7) and then these windows are treated as potential time windows
of plans from the set DPLAN .

Using the planning graph paths occurring in data, decision tables may be
constructed and what follows there may also be constructed classifiers which
allow solving conflicts between actions which may be performed in a given state
for the complex object. Let us notice that the classifiers mentioned above also
allow determining what the state of the complex object will be after performing
the chosen action. The starting point for the construction of such classifiers is a
resolving table (see Fig. 43).

Definition 61. (A resolving table)
Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– s ∈ S is a fixed state,
– k is a fixed length of path,
– Φ = {φ1, ..., φm} ⊆ FPPG(PG) is a family of formulas defined by experts,
– PFPPG = (U,Φ, |=FPPG) is a property system, where

U = DPLAN(T,PG, s, k)

and the satisfiability relation |=FPPG⊆ U×Φ is defined in the following way:
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Fig. 43. The scheme of construction of the resolving table for a given state

∀p = (v1, ..., vk) ∈ U and φ ∈ Φ :

u |=FPPG φ ⇔ Subpath(p, 1, k − 2) |=FPPG(PG) φ.

A resolving table for the state s from the planning graph PG constructed using
the length of path k is a decision table RT(s, k) = (U,A, d), where:

– (U,A) is an information system defined be the property system PFPPG,
– d is a decision attribute, where values of the attribute d, being ordered pairs

of the form (action, state), are computed in the following way:

∀p = (v1, ..., vk) ∈ U : di(p) = (vk−1, vk).

The objects of this table are paths in the planning graph observed in data,
starting and ending with a state. Thus, they are plans. Conditional attributes
describe the properties of these paths excluding the last two nodes of each path
and they are defined on the basis of the formulas of the language FPPG provided
by the expert, whereas the values of the decision attribute are arrangement of
the action performed after the last but one state on the path and the last state
on the path.

Example 36. In Fig. 44, the planning graph for the RDS treatment is shown. For
each state occurring in the graph, with the use of available data sets concerning
the treatment of respiratory failure, resolving tables may be constructed. Con-
ditional attributes of these tables are created with the use of patterns defined
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Fig. 44. A planning graph for the treatment of infants during the RDS

by experts in language FPPG. Below, we present examples of typical patterns
of this type:

1. the first (last) state in the plan is the RDS excluded (RDS with mild hypox-
emia, RDS with severe hypoxemia, RDS with very severe hypoxemia, RDS
with mild or severe hypoxemia, RDS with severe or very severe hypoxemia)
state,

2. the first (last) action in the plan is the Mechanical ventilation MAP1 mode3

(Mechanical ventilation MAP2 mode, Mechanical ventilation MAP3 mode,

3 Invasive mechanical ventilation is a method to mechanically assist or replace spon-
taneous breathing when patients cannot do so on their own. It is administered after
an invasive intubation, a procedure wherein an endotracheal or tracheostomy tube
is inserted into the airway, through which air is directly delivered under pressure
(see [126] for more details). It could be simplify, that mean airway pressure (MAP)
delivered by mechanical device is proportional to severity of respiratory failure. For
purpose of our experiments mechanical ventilation was divided into three following
modes:

– MAP1 - airway pressure lower than 10 cm H2O (low-intensity ventilation),

– MAP2 - airway pressure 10-16 cm H2O (middling-intensity ventilation),

– MAP3 - airway pressure higher than 16 cm H2O (high-intensity ventilation).
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Mechanical ventilation CPAP mode4, Respiration unsupported, Mechanical
ventilation MAP2 or MAP3 mode) action,

3. in the plan there occurs the RDS excluded (RDS with mild hypoxemia, RDS
with severe hypoxemia, RDS with very severe hypoxemia, RDS with mild or
severe hypoxemia, RDS with severe or very severe hypoxemia) state,

4. in the plan there occurs the Mechanical ventilation MAP1 mode (Mechani-
cal ventilation MAP2 mode, Mechanical ventilation MAP3 mode, Mechani-
cal ventilation CPAP mode, Respiration unsupported, Mechanical ventilation
MAP1 or CPAP mode) action,

5. in the plan there occurs only the RDS excluded (RDS with mild hypoxemia,
RDS with severe hypoxemia, RDS with very severe hypoxemia, RDS with
mild or severe hypoxemia, RDS with severe or very severe hypoxemia) state,

6. in the plan there occurs only the Mechanical ventilation MAP1 mode (Me-
chanical ventilation MAP2 mode, Mechanical ventilation MAP3 mode, Me-
chanical ventilation CPAP mode, Respiration unsupported) action,

7. the RDS with very severe hypoxemia state occurs in the 70% of states of the
plan,

8. from the middle of the plan to its end in 80% of the states there occurs the
RDS excluded state,

9. if there occurs the RDS with mild hypoxemia state in the plan then the RDS
with severe hypoxemia state occurs in the further part of this plan,

10. if there occurs the Mechanical ventilation MAP3 mode action in the plan
then the Mechanical ventilation MAP2 mode action occurs in the further
part of this plan,

11. if there occurs the Mechanical ventilation MAP2 mode action in the plan
then RDS with mild hypoxemia state occurs in the further part of this plan.

A classifier may be constructed for the resolving table which we call a resolv-
ing classifier.

Definition 62. (A resolving classifier)
Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– s ∈ S is a fixed state,
– k is a fixed length of path,

4 CPAP (continuous positive airway pressure) - a method of non-invasive ventilation
delivering a stream of compressed air via a hose to a nasal pillow, nose mask or
full-face mask, splinting the airway (keeping it open under air pressure). This is a
gentle type of respiratory ventilation, which can prevent the need for endotracheal
intubation, or allow earlier extubation of critically ill patients (see [126] for more
details).
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– RT(s, k) = (U,A, d) is a resolving table for the fixed state s from the planning
graph PG constructed using the length of path k.

1. Each stratifying classifier constructed for table RT(s, k) is called a resolving
classifier and is denoted in general by µRT(s,k). This classifier serves the
classification of paths which belong to the DPLAN(T,PG, s, k − 2).

2. For any p ∈ DPLAN(T,PG, s, k − 2) and resolving classifier µRT(s,k) by
PairList(µRC(s,k)(p)) we denote a list of pairs (action, state) which the clas-
sifier µRC(s,k) returns to the path p ordered in a decreasing order in relation
to weigh values proposed by the classifier for all pairs, and at the same time
only pairs with non-zero weight are returned.

3. If L is a PairList(µRC(s,k)(p)), then the i-th pair of this list is marked as
L[i]. The first element of the pair L[i] (action) is marked as L[i].action,
whereas the second element of this pair (state) is marked as L[i].state.

Such resolving classifiers can be constructed for all states, i.e., for all associ-
ated resolving tables. In addition, these classifiers make it possible to obtain a
list of actions and states after usage of actions with their weights in descending
order. This is possible using the stratifying classifier.

7.8 Algorithms of Automated Planning for Complex Objects

In the present subsection, we provide three algorithms of automated planning of
the complex object behavior. The first one determines one plan of established
length starting with the established initial state, and at the same time the final
(target) state is not established.

The second algorithm determines the plan starting with the established initial
state and ending with the established final state. The length of the generated
plan is limited from the top by the established constant value.

The third algorithm, however, determines the list of plans starting with the
established (for all plans) initial states, and at the same time the length of the
generated plans is established. Similarly to the second algorithm, the length of
the generated plan is limited from the top by the established constant value.

The first of the algorithms mentioned above is similar to the algorithm
Forward-search known from literature (see, e.g., [100, 337]), but instead of choos-
ing randomly the actions to perform in a given state the algorithm goes to the
next state on the basis of the decision obtained from the classifier solving con-
flicts between actions in a given state. Therefore, this algorithm is called Expert
forward search (see Algorithm 7.1).

However, we assume that during execution of algorithms presented in this
section the following elements should by available:

– a planning graph PG = (S,A, E) for complex objects of a fixed type T ,
– a fixed length of path k in the planning graph PG,
– a resolving classifiers µRC(s,k) for all s ∈ S.
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Algorithm 7.1: Expert forward search (EFS)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of a

given complex object, that is finished by an initial state to start of
automated planning,

– expected length lp of generated plan.

Output: The plan p generated for the given complex object

Procedure EFS(h, lp)1

begin2

p := “empty plan”3

s := GetLastElementFrom(h)4

p := p + s // Add s to the end of the plan p5

while length(p) < lp do6

L := PairList(µRC(s,k)(h))7

p := p + L[1].action + L[1].state8

RemoveF irstTwoElementsFrom(h)9

h := h + L[1].action + L[1].state10

s := L[1].state;11

end12

return p13

end14
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The Algorithm 7.1 starts the planning from path h ∈ DPLAN(T,PG, k)
which describes the previous states of the complex object and the actions applied
for this object. Next, using the resolving classifier µRC(s,k), the most appropriate
pairs: state+action are generated in the next iterations until the plan of the
expected length is obtained.

If it is assumed that each of classifiers µRC(s,k) can classify paths for each
s ∈ S within the time of order O(C), where C is a certain constant, then the
time complexity of the Algorithm 7.1 is of order O(n), where n is the length of
the generated plan.

The Algorithm 7.1 is, on the one hand very fast, but on the other its final
result does not always comply with our expectations. For example, in planning
for a single complex object we usually wish our planning algorithm to find a
plan which leads the complex object to the established target state. Meanwhile,
the final state of the planning using the algorithm EFS depends on classifier
µRC(s,k) and cannot be imposed. Therefore, we define the algorithm EEFS
which determines the plan starting with the established initial state and ending
with the established final state (see Algorithm 7.2).

The Algorithm 7.2 works in such a way that at the stage of planning of a
single action, its different variants are taken into consideration which may be
performed in a given state. However, for regulation of computational time dura-
tion limitation, the value ActionLimit is used, that is, limitation of the number
of actions which may be performed in a given state (see line 7). Thus, the clas-
sifier µRC(s,k) returns the list of pairs (action + state) sorted decreasingly in
relation to the weights obtained from classification, the actions most recom-
mended by classifier µRC(s,k) are always taken into consideration. In this way
the algorithm constructs a certain type of a plan tree whose root is the initial
state and the leaves are the states after performing the individual variants of the
plan. If, during construction of this tree the final state appears, then the work
of the algorithm is ended and as a solution a sequence of states and actions is
returned which starts in the tree root and ends with the final state that is found.
If, during the construction of the plan tree the algorithm does not encounter the
final state, then an empty plan is returned which means that the algorithm has
not found a solution.

The procedure EEFS from the Algorithm 7.2 is recurrent. It is easy to notice
that its time complexity is determined by a recurrent equation:

T (n) =
{

A ·m + B for n = 1
m · T (n− 1) + C ·m + B for n > 1,

where A, B and C are certain constants, n is the duration of the plan under
construction and m is limitation ActionLimit, that is, limitation of the number
of actions which may be performed in a given state. The solution of the above
recurrent equation is the following:

T (n) = A ·mn + B ·mn−1 + C ·m · mn−1 − 1
m− 1

+ B · mn−1 − 1
m− 1

.
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Algorithm 7.2: Exhaustive expert forward search (EEFS)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of a

given complex object, that is finished by an initial state to start of
automated planning,

– target state of planning st,
– maximal length of generated plan lp.

Output: The plan p generated for the investigated complex object, ended
by the state st

Procedure EEFS(h, st, lp)1

begin2

p := “empty plan”3

s := GetLastElementFrom(h)4

p := p + s // Add s to the end of the plan p5

L := PairList(µRC(s,k)(h))6

for i = 1 to ActionLimit do7

p1 := Copy(p)8

p1 := p1 + L[i].action + L[i].state9

if (L[i].state = st) then return p110

if (lp > 1) then11

h1 := Copy(h)12

RemoveF irstTwoElementsFrom(h1)13

h1 := h1 + L[i].action + L[1].state14

p2 := EEFS(h1, st, lp − 1)15

if (p2 is not empty ) then16

return p + p217

end18

end19

end20

return “empty plan”21

end22

216



Thus, the pessimistic time complexity of the procedure EEFS is of order
O(mn). Such a high pessimistic time complexity means that the effective appli-
cation of this algorithm for non-trivially small n and m is practically impossible.
Therefore, it may be applied only in constructing very short plans with very
small values m.

In the task of constructing a plan executing a meta-action for a structured ob-
ject another planning algorithm for a single object is necessary (see Section 7.15).
Namely, in this case the planning target state is also not known, but one has to
generate all sensible (compatible with domain knowledge) plans of a given du-
ration for a given complex object. Therefore, we define the algorithm FEEFS
(see Algorithm 7.3).

It is easy to notice that the analysis of time complexity of the Algorithm 7.3
is very similar to the case of Algorithm 7.2. Therefore, the pessimistic time
complexity of the FEEFS is of order O(mn) where n is the duration of the plan
under construction and m is limitation of the number of actions which may be
performed in a given state. This means, that similarly to the case of algorithm
EEFS the effective application of algorithm FEEFS for non-trivially small
n and m is practically impossible. Therefore, this algorithm is used only for
construction of short plans for the need of planning of single meta-actions (see
Section 7.15).

7.9 Partial Reconstruction of Plan

Having constructed the plan for a complex object, its execution may take place.
For example, let us assume that for a certain complex object the plan (s1, a1,
..., ai−1, si, ai, ..., sn, an, sn+1) was constructed which consists of n actions
a1, ..., an and n + 1 states s1, ..., sn+1. The initial state in this plan is state s1

and the target state is the state sn+1. The execution of this plans works in such a
way that after having identified the current state of the complex object as state
s1, actions from the plan are performed successively, with the changing states
of object, until we reach target state sn+1. However, in practice it is not always
possible to execute the whole plan. It may, happen that during the execution of
the plan such a state of an object appeared that is not compatible with the state
proposed by the plan. For example, let us assume that s′i is such a state which
appeared instead of state si (see Fig. 45). Then, a question arises whether the
execution of the plan should be continued or whether it should be reconstructed
(changed). If state s′i differs slightly from state si, then maybe the execution
of the current state may be continued. If, however, state s′i differs significantly
from state si, then the current plan has to be reconstructed. It would seem that
the simplest way to reconstruct a plan is to construct a new one, which starts in
state s′i and ends in target state sn+1. Such a method of reconstruction we call
a total reconstruction. However, in practical applications a total reconstruction
may turn out to be too costly in terms of computation. Therefore, we propose a
different method of plan reconstruction which is called a partial reconstruction.
It consists in constructing a short so-called repair plan which brings the complex
object to such state sj that appears in the current state between the states
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Algorithm 7.3: Full exhaustive expert forward search (FEEFS)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of a

given complex object, that is finished by an initial state to start of
automated planning,

– length of generated plan lp.

Output: The list of plans for the investigated complex object

Procedure FEEFS(h, lp)1

begin2

plist := “empty list of plans”3

p := “empty plan”4

s := GetLastElementFrom(h)5

p := p + s // Add s to the end of the plan p6

L := PairList(µRC(s,k)(h))7

for i = 1 to ActionLimit do8

p1 := Copy(p)9

p1 := p1 + L[i].action + L[i].state10

if (lp > 1) then11

h1 := Copy(h)12

RemoveF irstTwoElementsFrom(h1)13

h1 := h1 + L[i].action + L[i].state14

plist1 := FEEFS(h1, lp − 1)15

for j := 1 to Length(plist1) do16

p2 := plist1[j]17

p3 := p1 + p218

Add plan p3 to the end of the list plist19

end20

else21

Add plan p1 to the end of the list plist22

end23

end24

return plist25

end26

218



si, ..., sn+1. On the basis of the repair plan the reconstruction of the current
plan is carried out by replacing its fragment beginning at si and ending at state
sj with the repair plan.

Of course the shorter the repair plan is, the more effective a partial recon-
struction is in terms of time. If, however, state s′i differs significantly from state
si, then finding a short repair plan is impossible and a total reconstruction is
the only solution.

a1

s1

ai-1

si-1

si

ai

sj

sn+1

si’

an1

sn1

ank+1

snk

...
The initial state

The target state

An original 
plan

A repair 
plan

s2

...

aj-1

...
...

A state not compatible with the state si
suggested by the original plan

A return 
state

Fig. 45. The partial reconstruction of a plan

We still have to face the problem of estimating the degree to which two states
are different. It needs to be done in order to enable the determination when two
states differ slightly, differ significantly or differ very much one from another.

There is yet another problem lying in the fact that the difference between
two states in the context of plan execution depends not only on those states
but also on the context in which those two states are compared, that is, on the
fragment of the plan that has been carried out so far, together with the states
that have appeared during the current plan execution (these states might have
slightly differed from the states described in the plan). Therefore, the estimation
of the difference between the plans should be made on the basis of the history
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of both states (the states and actions performed on the complex object over
the period of time preceding the examination of the difference). Formally, the
degree to which two states differ can be expressed with the help of the so-called
a function of dissimilarity between of states.

Definition 63. Let PG = (S, A, E) is a planning graph for complex objects of
a fixed type T and k is a fixed length of paths in the graph PG. Each function:

DISMPG : PATH(PG, k)× PATH(PG, k) −→ {high,moderate, low}
is called a function of dissimilarity between states from the planning graph PG.

The values of the function DISMPG which belong to set {high, moderate,
low} are proposed by the expert on the basis of domain knowledge. Value high
means a high dissimilarity between states, value moderate means a moderate
dissimilarity between states and value low means a low dissimilarity between
states.

The definition of a specific function of dissimilarity between states may be
given in an overt form, that is, using an expression calculating the value of dis-
similarity function. It often happens, however, that experts from a given field
are not able to present such an expression and limit themselves to presenting
a set of examples of the values of that function, that is, a set of pairs of paths
ended with compared states, labeled with the value of the dissimilarity func-
tion between states. In this case defining the dissimilarity function requires its
approximation using a classifier; and at the same time to define the features of
the paths preceding the compared states one may use a family of concepts of a
specific ontology constructed for the comparison of the paths. The classifier ap-
proximating the function of the dissimilarity between states is called a classifier
of dissimilarity between states.

Definition 64. Let us assume that:

– PG = (S, A, E) is a planning graph for complex objects of a fixed type T ,
– k is a fixed length of path in the planning graph PG,
– a family of concepts C1, ..., Cm ⊆ PATH(PG, k) × PATH(PG, k), which

have been defined by experts in order to describe difference aspects of simi-
larity between plans,

– a function of dissimilarity between states DISMPG.

1. A table of dissimilarity between states from the planning graph PG is a
decision table DITPG = (U,A, d), where:
– U ⊆ PATH(PG, k)× PATH(PG, k),
– A = {a1, ..., am} is a set of attributes created on the basis of concepts

C1, ..., Cm, where for any i ∈ {1, ...,m} values of ai are computed in the
following way:

∀(p1, p2) ∈ U : ai ((p1, p2)) =
{

1 if (p1, p2) ∈ Ci

0 otherwise ,
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– d is a decision attribute, where values of the attribute d are computed in
the following way:

∀(p1, p2) ∈ U : d( (p1, p2) ) = DISMPG( (p1, p2) ).

2. If DITPG = (U,A, d) is a table of dissimilarity between states from the
graph PG, then each classifier for the table DITPG is called a classifier of
dissimilarity between states from the graph PG and is denoted in general by
µDIT (PG).

Let us notice that not all possible pairs of paths from the set PATH(PG, k)
× PATH(PG, k) occur in the table of dissimilarity between states from the
planning graph, but only a certain chosen subset of this set. In practice, this
limitation is needed because the number of pairs of product PATH(PG, k) ×
PATH(PG, k) may be so large that the expert is not able to provide all values
of decision attribute d for them. That is why in the table of dissimilarity between
states there are usually only pairs chosen by an expert, which represent typical
cases of determining the function of dissimilarity between states which may be
generalized using a classifier.

Now, we may present the algorithm simulating the execution of the plan
which foresees the reconstruction of the plan during its execution (see Algo-
rithm 7.4).

However, we assume that during execution of algorithms presented in this
section the following elements should by available:

– a planning graph PG = (S,A, E) for complex objects of a fixed type T ,
– a fixed length of path k in the planning graph PG,
– resolving classifiers µRC(s,k) for all s ∈ S,
– a classifier of dissimilarity µDIT (PG) between states from the planning graph

PG.

The Algorithm 7.4 simulates the execution of the plan found earlier for the
complex object. The simulation is performed based on the procedure Simulate
which on the input takes the history of the current state together with its de-
scription of the current state and the action which is to be performed, and on
the output the algorithm returns the state which is the effect of this action’s ap-
plication. Although it is possible to imagine this type of procedure as a part of a
simulator of the behavior of the complex object (e.g., a traffic simulator, illness
development simulator), in this paper by this procedure we mean the changes
in the real complex dynamical system which may be triggered by performing
particular actions (e.g., changes of the location of the vehicle, changes in the
patient’s states during treatment et.)

The Algorithm 7.4 uses the reconstruction procedure. Therefore, we present
a plan reconstruction algorithm (see Algorithm 7.5).

The Algorithm 7.5 tries to find a short repair plan p2 (not longer than lp),
which leads the initial state of the reconstruction (the last state in history h)
to a state occurring in plan p1 starting with position pos until reaching position
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Algorithm 7.4: The simulation of the plan with reconstruction
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of a

given complex object, that is finished by an initial state to start of
simulation,

– plan p generated for a given complex object,
– maximal depth dr of the plan reconstruction,
– maximal length lp of a repair plan during the reconstruction.

Output: The executed plan p
begin1

if (length(p) < 3) then2

return “plan p is too short for execution”3

end4

hs := Copy(h); hp := Copy(h)5

i := 36

while (i < length(p)) do7

s := Simulate(hs, p[i− 1])8

RemoveF irstTwoElementsFrom(hs)9

hs := hs + p[i− 1] + s10

RemoveF irstTwoElementsFrom(hp)11

hp := hp + p[i− 1] + p[i]12

if (s 6= p[i]) then13

dism := µDIT (PG)(hs, hp)14

if (dism is “high”) then15

return “the total reconstruction is necessary”16

end17

if (dism is not “low”)) then18

p′ := Reconstruction(hs, p, i, dr, lp)19

if (p′ is empty) then20

return “the total reconstruction is necessary”21

end22

p := p′23

end24

end25

i := i + 2 // Go to the next state26

end27

end28
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Algorithm 7.5: The partial reconstruction of a plan (Reconstruction)
Input:
– path h = (h1, ..., hk) in the planning graph PG representing history of a

given complex object, that is finished by an initial state to start of
reconstruction,

– plan p1 generated for a given complex object before the reconstruction,
– position pos of initial state of the reconstruction in the plan p1,
– maximal depth dr of the plan reconstruction,
– maximal length lp of a repair plan during the reconstruction.

Output: The plan p1 after reconstruction

Procedure Reconstruction(h, p1, pos, dr, lp)1

begin2

j := pos3

s := GetLastElementFrom(h)4

while j ≤ pos + 2 · (dr − 1) do5

p2 := EEFS(h, p1[j], lp)6

if (p2 is not empty) then7

p3 := Subpath(p1, 1, pos−1)+p2+Subpath(p1, j+1, length(p1))8

return p39

end10

j := j + 211

end12

return “empty plan”13

end14
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pos+2 · (dr − 1). The maximum depth of reconstruction dr is, thus, the number
of states in plan p1 (starting with the state in position pos), which the algorithm
tries to reach with the help of the repair plan. The repair plan is searched with
algorithm EEFS (see Section 7.8), although it is possible to apply other planning
algorithms that have at least two following parameters: the target state and the
maximum duration of the created plan.

The computational complexity of the Algorithm 7.5 depends linearly on the
complexity of algorithm EEFS. However, in practice the application of this
algorithm may significantly accelerate the execution of plans requiring approx-
imation instead of a total reconstruction. Only a partial reconstruction of the
plan is performed whose degree of computational difficulty is much smaller than
the degree of difficulty of a total reconstruction (because of a smaller size of
the problem of the partial reconstruction in relation to the size of the total
reconstruction problem).

In practical applications there often occurs a situation that the reconstructed
plan must have the same length as the original one. It happens that way when,
e.g., a plan proposed by the expert, which is to be executed over the established
number of time units (e.g., minutes, hours, days), must be reconstructed. A
question arises, if in such a situation the duration time of partial reconstruction
executed with the help of the algorithm EEFS is in fact always shorter than the
time of total reconstruction which is executed with the same algorithm EEFS?
After all, the increase of the maximum reconstruction depth causes that in case
of not finding the return state, the procedure EEFS must be executed several
times for the next reconstruction depths, that is, for dr = 1, 2, ..., np − 1, where
np is the length of reconstructed plan. If the reconstruction algorithm are used,
assuming that the maximum reconstruction depth dr = np or even dr > np,
then obviously such a reconstruction would be more time costly for many plans
than total reconstruction. Even in the case when dr < np it could seem that
partial reconstruction executed using algorithm EEFS may be for certain plans
more time costly than total reconstruction. However, this simple intuition is
contradicted by the proposition presented below.

Proposition. Let us assume that:

– p is a plan of np length which requires a reconstruction, where np > 0,
– AP is an automatic planning algorithm that its time cost is expressed using

function T (n) = C ·mn, where C is a constant, m is the maximum number
of actions which are considered during the planning of an action in a given
state and n is the maximum length of the plan under construction (the time
complexity of AP is very similar to time complexity of algorithm EEFS).

If a reconstruction reconstructs a plan of the same length as before this recon-
struction, then for any maximum reconstruction depth dr < np the partial recon-
struction executed with algorithm AP takes less time than total reconstruction.

Proof. The cost of total reconstruction of the plan p is T (np), whereas the cost
of partial reconstruction, with the maximum reconstruction depth dr, is T (1) +
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T (2) + ... + T (dr). Therefore, partial reconstruction works faster than the total
one when:

T (1) + T (2) + ... + T (dr) < T (np)

that is:

C ·m1 + C ·m2 + ... + C ·mdr < C ·mnp (7)

Hence:

mnp+1 −mnp −mdr+1 + m > 0 (8)

It is sufficient to show that (8) is satisfied for any m > 1 and 0 < dr < np.
Starting from the left side of (8) we obtain:

mnp+1 −mnp −mdr+1 + m > mnp+1 −mnp −mnp−1+1 + m =

mnp+1 − 2 ·mnp + m = mnp(m− 2) + m ≥ mnp(2− 2) + m = m > 0

This completes the proof.
¤

On the basis of the above proposition one may state that partial reconstruc-
tion is always more effective than the total one, regardless of the plan length,
maximum number of actions which may be performed in a given state and the
maximum reconstruction depth. It must be stressed here, however, that partial
reconstruction cannot always reconstruct a plan. In such a situation, the use of
total reconstruction is the only option.

7.10 Automated Planning for Structured Complex Objects

In planning the behavior of structured objects, an effective planning of the be-
haviors of all objects which are parts of these objects at the same time is not
possible. Therefore, in such cases the behavior of all objects which are parts of
a structured object is planned separately. However, this approach to planning
of the behavior for a structured object requires a certain synchronization of the
plans constructed for individual parts in such a way that these plans would not
contradict each other and even complement each other in order to plan the best
behavior for a structured object. For example, the treatment of illness A which is
the resultant of two illnesses B and C requires such illnesses B and C treatment
that the treatments of both illnesses would not be contradictory to each other,
but even support and complement each other. For example, it may happen that
in treating illness B a certain medicine M1 may be used which is usually an
appropriate medicine but it may be applied only when illness C does not occur.
Hence, the synchronization of both illnesses’ treatment should exclude the ap-
plication of medicine M1. In a different situation it may happen that as a result
of application of medicine M2 for illness C the treatment of illness B is safer, for
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instead of giving a certain strong medicine M3, which has negative side effects,
it is enough to give a safer medicine M4 which leads to the same improvement
in the patient’s condition as in the case of giving medicine M3.

In a few next subsections we present a generalization of the method for
automated planning described in previous subsection for structured objects.

It is worth noticing that in literature one may observe the increase of interest
in learning methods of common behaviors of structured objects. This issue is
known under the term of learning communication protocols, cooperation and
competition (see, e.g., [301, 345]).

7.11 Planning Graphs for Structured Objects

In this paper, the elementary concept allowing planning the behavior of struc-
tured objects is the planning graph for structured objects.

Definition 65. (A planning graph for structured objects)
A planning graph for structured objects of a fixed type T is a triple PG = (S,A, E)
such that (S,A, E) is the planning graph, where:

– elements of the set S are called meta states and they represent states of
structured objects of the type T ,

– elements of the set A are called meta actions and they represent actions for
structured objects of the type T ,

– elements of sets PATH(PG, k) (where k > 1) and PATH(PG) are called
meta paths,

– elements of sets PLAN(PG, k) (where k > 1) and PLAN(PG) are called
meta plans.

In Fig. 46, we present an exemplary planning graph for a structured object,
that is a group of four diseases: sepsis, Ureaplasma, RDS and PDA, related to
the planning of the treatment of the infant during the respiratory failure (see
Appendix B). This graph was created on the basis of observation of medical data
sets (see Section 7.21) and with support of human experts.

As we see, there are two kinds of nodes in the planning graph for structured
object, namely, meta states nodes (denoted by ovals) that represent the current
state of a structured object specified as complex concepts by a human expert in
natural language, and meta action nodes (denoted by rectangles) that represent
actions defined for structured objects.

The major difference between the planning graph for the unstructured com-
plex object and the planning graph for the structured object is that in the last
one instead of actions performed at a single time point meta-actions occur which
are performed over a longer period of time, that is, a time window.

Similarly to the case of unstructured complex objects the problem of planning
for the structured object consists in constructing such a plan in planning graph
PG that leads the structured object from the initial state to the expected target
state.
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Fig. 46. A planning graph for the treatment of infants during the respiratory
failure

7.12 The Identification of the Meta State

At the beginning of planning for a structured object, we identify the current meta
state of this object. Any meta state node from a planning graph for structured
objects can be treated as a complex spatio-temporal concept that is specified
by a human expert in natural language. Such concepts can be approximated
by classifiers using data sets and domain knowledge accumulated for a given
complex dynamical system. Similarly to states from the planning graph for un-
structured complex objects, any state from the planning graph for structured
objects can be approximated as a temporal concept for unstructured object (see
Section 7.5). However, the state from the planning graph for structured objects
can be also treated as the temporal concept for structured objects. Therefore,
in this case the method of approximation from Section 6.22 can be used instead
of the method from Section 6.9. As a result, it is possible to recognize the initial
state at the beginning of planning for a particular structured object.
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7.13 Planning of a Meta Action

Similarly to the single complex object, during planning for some structured ob-
ject the path in the planning graph from the initial node-state to the target
node-state should be found. At the beginning of planning for a structured ob-
ject, we identify the current state of this object. As mentioned earlier, this can
be done by classifiers that have been constructed for all states from the planning
graph. Next, we plan a sequence of meta actions for transforming a structured
object from the current meta state to the target meta state (more expected, safer
or more comfortable). For example, in the case of the treatment of infants with
respiratory failure, if the infant is suffering from severe respiratory failure, we
try to change the patient status using some methods of treatment to change its
status to moderate or mild respiratory failure (see Fig. 46). However, any meta
action from such constructed path should be checked on the lower level, i.e., on
the level of any part of the structured object separately, if such action can be
realized in practice in case of particular part of this structured object. In other
words, it means that for any part of the structured object the sequence of action
should be planed in order to obtain meta-action on the level of the structured
object.

The plan of execution of a single meta-action, which consists of short plans
which execute this meta-action on the levels of individual parts of the structured
object, is called a g-plan.

Definition 66. (A g-plan)
Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF.

1. A g-plan with length k for the family of planing graphs PGF is a family
of plans {p1, ..., pl} (assigned to be executed for all parts of the established
structured object) such that pi ∈ PLAN(PGi, k) for i = 1, ...l. The set of
all g-plans with length k for the family of planing graphs PGF is denoted by
GPLAN(PGF, k).

2. Any g-plan {p1, ..., pl} ∈ GPLAN(PGF, k) is called a g-plan occurring in
system T, if pi ∈ DPLAN(T,PGi, k), for i = 1, ..., l and in system T
there exists such a family of time windows {W1, ..., Wl} ⊆ TW (T, k) that
the following conditions are satisfied:
– ∀Wi∈{W1,...,Wl}Wi ∈ TW (T, pi),
– ∀j∈{1,...,k} at(W1[j]) = at(W2[j]) = ... = at(Wl[j]).

3. A set of all g-plans occurring in the system T with length k and constructed
for the family of planing graphs PGF, is denoted by DGPLAN(T,PGF, k).
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The g-plan is, thus, a family of plans assigned to be executed for all parts of
the established structured object. The g-plan occurs in the temporal information
system with actions if its performance is observed in the data.

Let us notice that determining the DGPLAN(T,PGF, k) requires not only
determining sets DPLAN for all parts of the structured object but also syn-
chronizing them in time. There arises a problem of isolating structured objects.
If we assume, however, that the structured objects are created with the help of
the sweeping algorithm around parts of structured objects (see Section 6.13),
then the problem of determining the set DGPLAN is significantly simpler.

In practise, all constructed plans for objects (parts) belonging to a given
structured object should be compatible. Therefore, during planning a meta ac-
tion for a structured object, we use a special tool for verifying the compatibility
of plans generated for all members of a structured object. This verification can
be performed by using some special decision rules that we call elimination rules.
Such rules make it possible to eliminate combination of plans that are not com-
patible relative to domain knowledge. This is possible because elimination rules
describe all important dependencies between plans that are joined together. If
any combination of plans is not consistent with any elimination rule, then it is
eliminated. A set of elimination rules can be specified by human experts or can
be computed from data sets. In both of these cases, we need a set of attributes
(features) defined for a single plan that are used for explaining elimination rules.
Such attributes are specified by human experts on the basis of domain knowledge
and they describe some important features of the plan (generated for some part
of structured object) with respect to proper joining a plan with plans generated
for other parts of structured object.

These features are used as a set of attributes in the special table that we
call an elimination table. Any row of an elimination table represents information
about features of plans assigned for structured objects from the training data.

Definition 67. (An elimination table)
Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF,
– Φi = {φ1

i , ..., φ
mi
i } ⊆ FPPG(PGi) is a family of formulas defined by experts,

for i = 1, ..., l,
– Φ = Φ1 ∪ ... ∪ Φl,
– PGP = (U,Φ, |=GP ) is a property system, where

U = DGPLAN(T,PGF, k) and

the satisfiability relation |=GP⊆ U × Φ is defined in the following way:
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∀gp = {p1, ..., pl} ∈ U and φ ∈ Φ : gp |=GP φ ⇔

pi |=FPPG(PGi) φ, for i ∈ {1, .., l} such that φ ∈ Φi.

The information system defined by the property system PGP is called an elimi-
nation table of g-plans from the set GPLAN(PGF, k).

It is easy to notice that if the set DGPLAN(T,PGF, k) has already been
determined and the examination of formula satisfiability may be executed over
constant time, then the algorithm which determines the elimination table works
over time of order O(n ·m), where:

n = card(DGPLAN(T,PGF, k)) and m = card(Φ1 ∪ ... ∪ Φl).

Example 37. The respiratory failure may be treated as a result of four follow-
ing diseases: RDS, PDA, sepsis and Ureaplasma. Therefore, treating respiratory
failure requires simultaneous treatment of all of these diseases. This means that
the treatment plan of respiratory failure comes into existence by joining the
treatment plans for diseases RDS, PDA, sepsis and Ureaplasma, and at the
same time the synchronization of the plans is very important. In this paper,
one of the synchronizing tools for this type of plans is the elimination table.
In constructing the elimination table for treatment of respiratory failure, pat-
terns describing the properties of the joint plans are needed. Moreover, planning
graphs for all four diseases are necessary. In Fig. 44 the planning graph for RDS
treatment is shown, whereas in Example 36 we showed how the features of RDS
treatment plans may be defined. In a very similar way the features of treatment
plans for PDA, sepsis and Ureaplasma diseases may be defined. However, in this
paper we do not present the planning graphs for treating these diseases. The
reason for this is a high degree of complexity of these graphs in terms of medi-
cal knowledge (particularly in the case of treating disease sepsis). Therefore, we
also cannot give examples of specific features which may be used to describe the
treatment plans for diseases: PDA, sepsis and Ureaplasma (as we did in the case
of RDS treatment) (see Example 36).

On the basis of the elimination table a set of elimination rules can be com-
puted that can be used to eliminate inappropriate plan arrangements for indi-
vidual parts of the structured object.

Definition 68. (An elimination rule)
Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
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– k is a fixed plan length in planning graphs from the family PGF,
– ET(T,PGF, k) = (U,A) is an elimination table.

1. If a ∈ A then any decision rule with minimal number of descriptors (see
Section 2.3 and Section 2.4) computed for a decision table (U,A \ {a}, a) is
called an elimination rule for the elimination table ET(T,PGF, k).

2. A set of all elimination rules for the elimination table ET(T,PGF, k) is
denoted by ERUL(T,PGF, k).

3. If r ∈ ERUL(T,PGF, k), then an object u ∈ U is eliminated by the elim-
ination rule r iff u matches the predecessor of r and does not match the
successor of the rule r.

So, the set of elimination rules can be used as a filter of inconsistent com-
binations of plans generated for members of groups. Any combination of plans
is eliminated when there exists an elimination rule that is not supported by
features of a combination while the combination matches a predecessor of this
rule. In other words, a combination of plans is eliminated when the combination
matches to the predecessor of some elimination rule and does not match the
successor of a rule.

We propose the following method of calculation the set of elimination rules
on the basis of the elimination table (see Algorithm 7.6).

As we see in the Algorithm 7.6, for any attribute from the elimination table,
we compute the set of rules with minimal number o descriptors (see Section 2.3
and Section 2.4) treating this attribute as a decision attribute. In this way, we
obtain a set of dependencies in the elimination table explained by decision rules.
In practice, it is necessary to filter elimination rules to remove the rules with low
support because such rules can be too strongly matched to the training data.

Fig. 47 shows the scheme of elimination rules of not-acceptable g-plans con-
structed in the case of the treatment of respiratory failure, which is a result of
the four following diseases: sepsis, Ureaplasma, RDS and PDA.

On the basis of the set of elimination rules an elimination classifier may
be constructed that enable elimination of inappropriate plan arrangements for
individual parts of the structured object.

Definition 69. (An elimination classifier)
Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF,
– ET(T,PGF, k) = (U,A) is an elimination table,
– ERUL(T,PGF, k) is a set of all elimination rules of g-plans from the set

GPLAN(PGF, k).
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Algorithm 7.6: Generation of elimination rules
Input:
– temporal information system with actions T,
– type T of structured objects, where objects of this type are composed of l

parts of object of types T1,...,Tl,
– family of planning graphs PGF = {PG1, ...,PGl}, where

PGi = (Si, Ai, Ei)
is a planning graph for complex objects of type Ti, for i = 1, ..., l,

– fixed plan length k from planning graphs from the family PGF,
– elimination table ET(T,PGF, k) = (U,A) such that A = {a1, ...., am},
– minimal support ts of useful elimination rules.

Output: The set of elimination rules computed for the table
ET(T,PGF, k)

begin1

Create empty set of rules ERUL2

for any a ∈ A do3

Create a decision table ETa = (Ua, Aa, d) such that, Ua = U ,4

Aa = A \ {a} and d = a
Generate a set RUL(ETa) of decision rules with minimal number5

of descriptors (see Section 2.3 and Section 2.4) for the table ETa

Add rules from the set RUL(ETa) to the set ERUL6

end7

Remove from the set ERUL all rules with support less than ts8

return ERUL9

end10
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s1 ... sm pdal...pda1rdsk...rds1un...u1

Attributes specified by human experts describing features of plans 
for members of the group (i.e. sepsis, Ureaplasma, RDS and PDA)

The elimination table

For any attribute from the elimination 
table, we compute the set of rules treating 

this attribute as a decision attribute

Any row represents 
information about features 
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diseases belonging to the 

exemplary group of 
diseases from the

training data Elimination rules
(Dependencies in the elimination table explained by 
decision rules with minimal number of descriptors, 

e.g., s1=NO & rds2=YES => pda1=YES)

Fig. 47. The scheme of construction of elimination rules for group of four dis-
eases: sepsis, Ureaplasma, RDS and PDA

An elimination classifier based on the set ERUL(T,PGF, k) of all elimina-
tion rules (or on some subset of this set) is a classifier denoted in general by
µET(T,PGF,k) and classifying g-plans in the following way:

∀u ∈ U : µET(T,PGF,k)(u) =
{

false when ∃r∈ERUL u is eliminated by r
true otherwise. .

If the combination of plans for parts of the structured object is consistent
(it was not eliminated by elimination rules), we should check if the execution of
this combination allows us to realize the expected meta action from the level of
structured objects. This can be done by a special classifier constructed for a table
called a meta action table. The structure of a meta action table is similar to the
structure of an elimination table, i.e., attributes are defined by human experts,
where rows represent information about features of plans assigned for parts of
exemplary structured objects from the training data. In addition, we add to this
table a decision attribute. Values of such decision attributes represent names of
meta actions which are realized as an effect of the execution of plans described
in the current row of a training table.

Definition 70. (A meta action table)
Let us assume that:

– T is a temporal information system with actions,
– T is a type of structured objects, where objects of this type are composed of

l parts of object of types T1,...,Tl,
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– PG = (S,A, E) is a planning graph for structured objects of the type T ,
– PGF = {PG1, ...,PGl} is a family of planning graphs, where PGi =

(Si, Ai, Ei) is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– k is a fixed plan length in planning graphs from the family PGF,
– Φi = {φ1

i , ..., φ
mi
i } ⊆ FPPG(PGi) is a defined by experts family of formulas,

for i = 1, ..., l,
– Φ = Φ1 ∪ ... ∪ Φl,
– PGP = (U,Φ, |=GP ) is a property system, where

U = DGPLAN(T,PGF, k) and

the satisfiability relation |=GP⊆ U × Φ is defined in the following way:

∀gp = {p1, ..., pl} ∈ U and φ ∈ Φ : gp |=GP φ ⇔

pi |=FPPG(PGi) φ, for i ∈ {1, .., l} such that φ ∈ Φi.

1. A meta action table of g-plans for structured objects is a decision table
MAT(T,PGF, k) = (U,A, d), where:

– (U,A) is an information system defined be the property system PGP ,
– d is a decision attribute that for any g-plan from the set U , represents a

meta action corresponding to execution of this g-plan.

2. If MAT(T,PGF, k) is the meta action table, then any classifier computed
for the table MAT(T,PGF, k) is called a meta action classifier and is de-
noted by µMAT(T,PGF,k).

The classifier computed for an action table makes it possible to predict the
name of a meta action for a given combination of plans from the level of parts of
a structured object. The last step is the selection of combinations of plans that
makes it possible to obtain a target meta action with respect to a structured
object (see Fig. 48).

Example 38. The treatment of respiratory failure requires simultaneous treat-
ment of RDS, PDA, sepsis and Ureaplasma. Therefore, the treatment plan for
respiratory failure comes to existence by joining the treatment plans for RDS,
PDA, sepsis and Ureaplasma, and at the same time the synchronization of those
plans is very important. The first tool to synchronize these types of plans is the
elimination classifier generated for the elimination table. The second tool, how-
ever, is the meta action classifier generated for the meta action table. Similarly
to the case of the elimination table, also in constructing the meta action table,
patterns describing the properties of the joint treatment plans for RDS, PDA,
sepsis and Ureaplasma are needed. These patterns are very similar as in the case
of the patterns used to construct the elimination table (see Example 37).
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Fig. 48. The scheme of meta action planning

It was mentioned in Section 7.3 that the resolving classifier used for genera-
tion of a next action during the planning for a single object, gives us the list of
actions (and states after usage of action) with their weights in descending order.
This makes it possible to generate many alternative plans for any single object
and many alternative combinations of plans for a structured object. Therefore,
the chance of finding an expected combination of plans from a lower level to
realize a given meta action (from the higher level) is relatively high.

After planning the selected meta action from the path of actions from the
planning graph (for a structured object), the system begins the planning of the
next meta action from this path. The planning is stopped, when the planning of
the last meta action from this path is finished.

7.14 Data Structures, Algorithms and Numerical Constants
Concerning the Planning for Structured Objects

In the next subsections, we present several algorithms which are needed to plan
the behavior of structured objects. Therefore, in this subsection we formulate the
problem of behavior planning of such objects and we mention elementary data
structures, algorithms, and numerical constants which we use in the described
algorithms. This allows avoiding repetitive descriptions of elements of such a
kind.
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When we speak about the structured object’s behavior planning, we always
mean the behavior planning of a certain structured object O of the established
type T which consists of parts O1, ..., Ol which are respectively the objects of
types T1, ..., Tl. In practical applications, objects O1, ..., Ol are often unstruc-
tured objects, however, they also may be structured objects of lesser complexity
than object O. Hence, the methodology of structured object behavior planning
described here is of a hierarchical character.

In this paper, in automatic planning of complex object behavior we use data
sets represented by the temporal information system with actions T = (U, A,
aid, ≤aid

, at, ≤at , ac). We also use the following data structures, algorithms,
and numerical constants:

– a planning graph PG = (S,A, E) for structured objects of a fixed type T ,
– a fixed plan length K in planning graphs PG,
– a classifier µRC(PG,S,K), for all S ∈ S,
– a classifier of dissimilarity µDIT (PG) between meta states from the planning

graph PG,
– a limitation ActionLimit of the number of meta actions which may be per-

formed in a given state S ∈ S,
– a maximal length Lp of generated plan for structured objects,
– a maximal depth Dr of a plan reconstruction for structured objects,
– a maximal length Lrp of a repair plan for structured objects (during recon-

struction),
– a family of planning graphs PGF = {PG1, ...,PGl}, where PGi = (Si, Ai, Ei)

is a planning graph for complex objects of type Ti, for i = 1, ..., l,
– a fixed length o plans k in planning graphs from the family PGF,
– a classifier of dissimilarity µDIT (PGi) between states from the planning graph

PGi, for i = 1, ..., l,
– a length lgp of generated g-plan constructed for execution of any meta action

from the set A,
– an elimination classifier µET(T,PGF,k) (see Definition 69),
– a meta action classifier µMAT(T,PGF,k) (see Definition 70),
– a maximal depth d of reconstruction of g-plans,
– a maximal length lrp of a repair of g-plan.

The mentioned above data structures, algorithms, and numerical constants
are used in algorithms presented in further subsections.

7.15 Algorithms of the Meta Action Planning

The basic method of automated planning for the structured object is the method
of planning of the meta-action. The planning of the established meta-action
requires constructing such a g-plan that has a required length, it is compatible
with domain knowledge and its execution corresponds to the performance of the
established meta-action.

We present an example of an automated planning algorithm for a meta-action
which has been used in our experiments (see Algorithm 7.7).
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Algorithm 7.7: Searching for g-plan for a meta action (SearchGPlanMA)
Input:
– path hi ∈ PLAN(PG, k) in the planning graph PGi representing history

of the object Oi, that is finished by an initial state to start of automated
planning for object Oi, for i = 1, ..., l,

– target meta action mat ∈ A,
– length of g-plan lgp.

Output: The g-plan for execution the meta action mat

Procedure SearchGPlanMA({h1, ..., hl},mat, lgp)1

begin2

PList1 := FEEFS(h1, lgp)3

...4

PListl := FEEFS(hl, lgp)5

PCList := PList1 × ...× PListl6

Sort PlanCompList by established method7

for i := 1 to length(PCList) do8

gplan := PCList[i]9

if (µET(T,PGF,k)(gplan) = true) then10

if (µMAT(T,PGF,k)(gplan) = mat) then11

return gplan12

end13

end14

end15

return “empty g-plan”16

end17
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The procedure SearchGPlanMA (see Algorithm 7.7) constructs a g-plan for
the structured object which executes the required meta-action. First, the sets of
plans are generated for all the parts of the structured object separately. Then, the
Cartesian product PCList of these sets is created, whose elements are candidates
for the g-plan that is being searched for. Finally, this product is overviewed
until finding such a g-plan that is not eliminated by classifier µET(T,PGF,k)

and performs the required meta-action on the structured object according to
classifier µMAT(T,PGF,k). If during the overview of the set PCList such a g-
plan occurs, then the execution of the algorithm is ended and exactly this g-
plan is returned as a solution. If during the overview of the PCList set the
algorithm does not encounter such a g-plan, then an empty g-plan is returned
which means that the algorithm has not found the solution. However, before the
overview of the set PCList takes place, it is sorted. The sorting is necessary for
the first g-plan that is found which executes the required meta-action is the most
recommended in terms of all parts of the structured object for which the plans are
constructed. An example of such sorting g-plans may be the sorting in relation
to the weight GPlanWeight which is defined for a given g-plan gp = (p1, ..., pl),
where pi ∈ PListi for i = 1, ..., l, in the following way:

GPlanWeight(gp) =
1∑l

i=1 Index of pi in the list PListi
.

The time complexity of the Algorithm 7.7 depends greatly on the size of the
set PCList. Therefore, the length of the plan lists generated for individual parts
of the structured object should be chosen in such a way that the size of the set
PCList would be feasible for searching over this set.

Sometimes, a slightly different algorithm of g-plans searching is necessary.
We mean the situation when a g-plan is constructed, that satisfies certain con-
ditions for all parts of the analyzed structured object. In such a situation the
Algorithm 7.8 may be used.

As we see, the Algorithm 7.8 constructs such a g-plan for the structured
object that ends with specific states for individual parts of the structured object.

7.16 Automated Planning Algorithm for Structured Objects

Now, we may present the planning algorithm for the structured object which
uses the SearchGPlanMA procedure (see Algorithm 7.9).

The algorithm 7.9 takes into consideration different variants for a meta-
action, that may be performed in a given meta-state. However, only those actions
are taken into account which algorithm SearchGPlanMA can execute using a
g-plan on the level of single parts of the structured object. Similarly to the
case of Algorithm 7.2, for the regulation of computing time duration, limitation
ActionLimit is used, that is, limitation of the number of actions which may be
performed in a given state. Besides that, classifier µRC(PG,S,K) returns the list of
pairs (meta action + meta state) sorted decreasingly in relation to the weights
obtained from classification. Hence, the meta-actions are taken into account in
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Algorithm 7.8: Searching for g-plan for states (SearchGPlan)
Input:
– path hi ∈ PLAN(PG, k) in the planning graph PGi representing history

of the object Oi, that is finished by an initial state to start of automated
planning for object Oi, for i = 1, ..., l,

– target state si for the object Oi, for i = 1, ..., l,
– length of g-plan lgp.

Output: The g-plan ends by states s1, ..., sl

Procedure SearchGPlan({h1, ..., hl}, {s1, ..., sl}, lgp)1

begin2

PList1 := FEEFS(h1, lgp)3

...4

PListl := FEEFS(hl, lgp)5

PCList := PList1 × ...× PListl6

Sort PCList by fixed order7

for i := 1 to length(PCList) do8

{p1, ..., pl} := PCList[i]9

if (µET(T,PGF,k)(gplan) = true) then10

if (p1[lp] = s1) and .... and (pl[lp] = sl) then11

return {p1, ..., pl}12

end13

end14

end15

return “empty g-plan”16

end17
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Algorithm 7.9: Exhaustive expert forward search for a structured object
Input:
– path H = (H1, ..., Hk) ∈ PLAN(PG, k) representing history of a given

structured object O, that is finished by an initial meta state to start of
automated planning,

– family of paths h1, ..., hl, where hi is a path from the planning graph PGi,
representing history of the object Oi during execution the last meta action
for this object, for i = 1, ..., l,

– target meta state St ∈ S,
– a maximal length Lp of plan for structured objects.

Output: The plan P for structured object O ended by the meta state St

Procedure EEFSS(H, {h1, ..., hl}, St, Lp)1

begin2

S := GetLastElementFrom(H)3

P := “empty plan”4

P := P + S;5

L := PairList(µRC(PG,S,K)(H))6

for i = 1 to ActionLimit do7

P1 := Copy(P );8

gplan := SearchGPlanMA({h1, ..., hl}, L[i].action)9

if (gplan in not empty) then10

P1 := P1 + L[i].action + L[i].state11

if (L[i].state = St) then12

return P113

end14

if (Lp > 1) then15

H1 := Copy(H)16

RemoveF irstTwoElementsFrom(H1)17

H1 := H1 + L[i].action + L[i].state18

P2 := EEFSS(H1, gplan, St, Lp − 1)19

if (P2 is not empty ) then20

return P + P221

end22

end23

end24

end25

return “empty meta plan”26

end27
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the order from the ones most recommended by the classifier µRC(PG,S,K) to the
less recommended by this classifier. This way, the algorithm constructs a certain
plan tree whose root is the initial meta-state and the leaves are the meta-states
after performing the individual variants of the plan. If during construction of
this tree the final meta-state occurs, then the performance of the algorithm is
ended and as a solution a sequence of meta-states and meta-actions is returned
which starts in the tree root and ends in the final meta-state that has been
found. If during construction of plan tree the algorithm does not encounter the
final meta-state, an empty plan is returned which means that the algorithm has
not found the solution.

The analysis of the pessimistic time complexity of Algorithm 7.9 is very
similar to the Algorithm 7.2. The only difference is that before applying the meta
action the procedure SearchGPlanMA should be executed in order to check how
a given meta-action can be executed for the parts of the structured object. If
it is even assumed that this checking takes place over constant time, then the
pessimistic time complexity of the procedure EEFSS is of order O(mn) where
n is the length of the constructed plan and m is the limitation of the number of
meta-actions which may be performed in a given meta-state (ActionLimit). This
means that similarly to the case of algorithm EEFS the effective application of
the algorithm EEFSS for nontrivially small n and m is practically impossible.
However, in practice the planning graphs for the structured object are relatively
simple (see Fig. 46) and this algorithm may be used for them.

7.17 Reconstruction of Plan for Structured Objects

The main aim of this section is to present the algorithm of reconstruction of a
plan constructed for structured objects. Similarly to the case of the unstructured
complex object (see Section 7.9) such a reconstruction may be performed dur-
ing the execution of the meta plan for the structured object when the initially
established plan cannot be continued.

We may present the algorithm simulating the execution of the meta plan
which foresees the reconstruction of the plan during its execution (see Algo-
rithm 7.10).

The Algorithm 7.10 simulates the execution of the meta-plan found earlier
for the structured object. The simulation is performed based on the procedure
SimulateMA which on the input takes the history of the current states of all
parts of the structured object. The procedure SimulateMA returns the g-plan gp
which has been performed as a result of the simulation of the meta-action. This
g-plan may differ from the input g-plan, because during the simulation of the
input g-plan a reconstruction on the level of meta-action performance may have
occurred (see Algorithm 7.11). Therefore, it may happen that the simulation
of the meta-action leads to a different meta-state than the one expected in the
original plan. Hence, the procedure MReconstruction can be executed in the
further process a reconstruction for the structured object (see Algorithm 7.13).

Now, we present the simulation algorithm of meta-action for the structured
object with the consideration of reconstruction (see Algorithm 7.11 and Fig. 49).
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Algorithm 7.10: The simulation of plan execution for a structured object
Input:
– a path H ∈ PLAN(PG, k) representing history of a given structured object

O, that is finished by an initial meta state to start of a simulation,
– a family of paths h1, ..., hl, where hi is a path from the planning graph

PGi, representing history of the object Oi during execution the last meta
action for this object (before the simulation), for i = 1, ..., l,

– a plan P ∈ PLAN(PG, LP ) established for a given complex object O,
– a sequence of g-plans gp1, ..., gpLP−1

2
implementing meta actions from P .

Output: The plan P executed for the structured object O
begin1

if (length(P ) < 3) return “meta plan P is too short for execution”2

Hs := Copy(H)3

Hp := Copy(H)4

i := 15

while (i < length(P )) do6

gp := SimulateMA({h1, ..., hl}, gp i+1
2

)7

if(gp is empty) return “start total reconstruction”8

S := µMAT(T,PGF,k)(gp)9

RemoveF irstTwoElementsFrom(Hs)10

Hs := Hs + P [i + 1] + S11

RemoveF irstTwoElementsFrom(Hp)12

Hp := Hp + P [i + 1] + P [i + 2]13

if (S 6= P [i + 2]) then14

dism := µDIT (PG)(Hs, Hp)15

if (dism is “high”) then return “start total reconstruction”16

if (dism is not “low”) then17

P ′ := MReconstruction(Hs, {h1, ..., hl}, P, i + 2)18

if (P ′ is empty) then return “start total reconstruction”19

P := P ′20

end21

end22

i := i + 2 // Go to the next meta action from the plan P23

end24

end25
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Algorithm 7.11: The simulation of meta-action for the structured object
with the consideration of g-plan reconstruction
Input:
– family of paths h1, ..., hl, where hi is a path from the planning graph PGi,

representing history of the object Oi during execution the last meta action
for this object, for i = 1, ..., l,

– meta action ma ∈ A and g-plan gp = (p1, ..., pl) corresponding to meta
action ma, that should be performed during a simulation.

Output: The g-plan executed for the structured object O

Procedure SimulateMA({h1, ..., hl}, {p1, ..., pl})1

begin2

for j := 1 to l do3

hsj := Copy(hj); hpj := Copy(hj)4

end5

i := 16

while (i < lgp) do7

{s1, ...., sl} := GSimulate({hs1, ..., hsl}, {p1[i + 1], ..., pl[i + 1]})8

DISM := false9

j := 110

while (j ≤ l) and (DISM=false) do11

RemoveF irstTwoElementsFrom(hsj)12

hsj := hsj + pj [i + 1] + sj13

RemoveF irstTwoElementsFrom(hpj)14

hpj := hpj + pj [i + 1] + pj [i + 2]15

if (sj 6= pj [i + 2]) then16

dism := µDIT (PGj)(hsj , hpj)17

if (dism is “high”) then return “generate new g-plan”18

if (dism is not “low”) then DISM := true19

end20

j := j + 121

end22

if (DISM=true) then23

gplan := GReconstruction({hs1, ..., hsl}, {p1, ..., pl}, j − 1)24

if (gplan is empty ) “generate new g-plan”25

for j := 1 to l do pj := gplan[j]26

end27

i := i + 228

end29

return {p1, ..., pl}30

end31
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Fig. 49. The simulation of meta action execution with reconstruction for a struc-
tured object composed of parts: A, B, C

The simulation is performed based on the procedure GSimulate which on the
input takes the history of the current states of all parts of the structured object
and actions which are to be performed for all these parts. Although it is possible
to imagine this type of procedure as a part of the behavior simulator of the
complex object (e.g., the traffic simulator, the illness development simulator),
in this paper by this procedure we understand the changes in the real system of
complex objects which may be triggered by performing specific meta-actions for
the structured object.

The Algorithm 7.11 uses the procedure of reconstruction GReconstruction.
Therefore, we present this procedure as the Algorithm 7.12.

The Algorithm 7.12 tries to find a short repair g-plan not longer than lrp

which brings the initial states of reconstruction (the last states in the histories
h1, ..., hl) to the states appearing synchronically in the plans p1, ..., pl starting
from position pos as far as position pos + 2 · (dr − 1). The maximum depth of
reconstruction dr is then the number of states in the plans p1, ..., pl (starting
from the states in position pos) which the algorithm tries to reach using the
repair g-plan. The repair g-plan is searched for by algorithm SearchGPlan.

Computational complexity of Algorithm 7.12 depends linearly on the com-
plexity of the algorithm SearchGPlan. However, in practice using this algorithm
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Algorithm 7.12: Partially reconstruction of g-plan (GReconstruction)
Input:
– family of paths h1, ..., hl, where hi is a path from the planning graph PGi,

representing history of the object Oi during execution the last meta action
for this object, for i = 1, ..., l,

– position pos of starting state of reconstruction in plans p1, ..., pl.

Output: The reconstructed g-plan p1, ..., pl

Procedure GReconstruction({h1, ..., hl}, {p1, ..., pl}, pos)1

begin2

j := pos3

while (j ≤ pos + 2 · (dr − 1)) do4

{q1, ..., ql} := SearchGPlan({h1, ..., hl}, {p1[j], ..., pl[j]}, lrp)5

if ({q1, ..., ql} is not empty) then6

p1 := Subpath(p1, 1, pos−1)+q1+Subpath(p1, j+1, length(p1))7

...8

pl := Subpath(pl, 1, pos− 1) + ql + Subpath(pl, j + 1, length(pl))9

return {p1, ..., pl}10

end11

j := j + 212

end13

return “empty g-plan”14

end15
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may significantly accelerate the execution of plans which require reconstruction
because instead of a total reconstruction, only a partial reconstruction is per-
formed.

If the meta state S, achieved as a result of simulation, differs too much from
its counterpart in plan P , then the total reconstruction of plan P is performed.

Finally, we present a plan reconstruction algorithm for a structured object
on the level of the planning graph for objects of this type (see Algorithm 7.13).

Algorithm 7.13: Reconstruction of the plan for structured objects
(MReconstruction)
Input:
– path H in the planning graph PG representing history of a given

structured complex object O, that is finished by an initial state to start
of reconstruction,

– family of paths h1, ..., hl, where hi is a path from the planning graph PGi,
representing history of the object Oi during execution the last meta action,
for i = 1, ..., l,

– plan P1 generated for a given structured object O before reconstruction,
– position pos of starting state of reconstruction in the plan P1.

Output: The plan P1 after reconstruction

Procedure MReconstruction(H, {h1, ..., hl}, P1, pos)1

begin2

j := pos3

while (j ≤ pos + 2 · (Dr − 1)) do4

P2 := EEFSS(H, {h1, ..., hl}, P1[j], Lrp)5

if (P2 is not empty) then6

P3 :=7

Subpath(P1, 1, pos− 1) + P2 + Subpath(P1, j + 1, length(P1))
return P38

end9

j := j + 210

end11

return “empty plan”12

end13

The Algorithm 7.13 tries to find a short repair plan P2 (not longer than Lrp)
which brings the initial state of the reconstruction (the last state in history H) to
a state appearing in plan P1, starting from position pos as far as position pos+2·
(Dr− 1). The maximum depth of reconstruction Dr is, therefore, the number of
meta states in plan P1 (starting from position pos), which the algorithm tries to
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reach using the repair plan. The repair plan is searched for by algorithm EEFSS
although it is possible to use also other planning algorithms.

Computational complexity of the above algorithm depends linearly on com-
plexity of algorithm EEFSS. However, in practice using this algorithm may
significantly accelerate the execution of meta plans which require reconstruction
because instead of a total reconstruction, only a partial reconstruction of the
meta-plan is performed whose degree of computational difficulty is much lower
than the difficulty level of a total reconstruction (with regard to the smaller size
of the problem).

7.18 Estimation of the Similarity Between Plans

The problem of inducing classifiers for similarity relations is one of the challeng-
ing problems in data mining and knowledge discovery (see, e.g., [7, 82, 96, 187,
259, 334, 336, 340, 342, 343]). The existing methods are based on building models
for similarity functions using simple strategies for fusion of local similarities. The
optimization of the assumed parameterized similarity formula is performed by
tuning parameters relative to local similarities and their fusion. For instance, if
we want to compare two medical plans of treatments, e.g., one plan generated
automatically by our computer system and another one proposed by medical
expert, we need a tool to estimate the similarity. This problem can be solved
by introducing a function measuring the similarity between medical plans. For
example, in the case of our medical data (see Section 7.21), a formula is used
to compute a similarity between two plans as the arithmetic mean of similarity
between all corresponding pairs of actions (nodes) from both plans, where the
similarity for the single corresponding pair of actions is defined by a consistence
measure of medicines and medical procedures comprised in these actions. For
example, let M = {m1, ..., mk} be a set consisting of k medicines. Let us as-
sume that actions in medical plans are specified by subsets of M . Hence, any
medical plan P determines a sequence of actions A(P ) = (A1, ..., An), where
Ai ⊆ M for i = 1, . . . , n and n is the number of actions in P . In our example,
the similarity between plans is defined by a similarity function Sim established
on pairs of medical plans (P1, P2) (of the same length) with the sequences of
actions A(P1) = (A1, ..., An) and A(P2) = (B1, ..., Bn), respectively as follows

Sim(P1, P2) =
1
n

n∑

i=1

|Ai ∩Bi|+ |M \ (Ai ∪Bi)|
|M | .

However, such an approach seems to be very abstract and ad hoc, because it
does not take into account any deeper knowledge about the similarity of plans,
e.g., domain knowledge. Whereas, the similarity relations for real-life problems
are usually more complex objects, i.e., their construction from local similarities
cannot be obtained by simple fusion functions. Hence, such similarity relations
cannot be approximated with the satisfactory quality by employing the existing
simple strategies. For this reason we treat this similarity measure, Sim, only
as an example and do not take into account in our further research (and in our
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proposed method). Whereas, to support the process of similarity relation approx-
imation, we propose to use domain knowledge represented by concept ontology
expressed in natural language. The ontology consists of concepts used by expert
in his explanation of similarity and dissimilarity cases. Approximation of the
ontology makes it possible to obtain some relevant concepts for approximation
of the similarity relation.

7.19 Ontology of the Similarity Between Plans

According to the domain knowledge, it is quite common, that there are many
aspects of similarity between plans. For example, in case of comparison of med-
ical plans used for the treatment of infants with respiratory failure, we should
take into consideration, e.g., the similarity of the antibiotics use, the ventilation
mode and the similarity of PDA closing (see Appendix B for mor medical de-
tails). Moreover, every aspect of the similarity should be understood in a different
way. For example, in estimation of the similarity in the antibiotic treatment, it
should be evaluated the kind of antibiotic, as well as the time of administration.
Therefore, it is necessary to investigate and take into account all incompatibili-
ties of the antibiotic use between corresponding pairs of nodes from both plans.
Excessive doses are rather acceptable (based on expert knowledge), whilst the
lack of medicine (if it is necessary) should be taken as a very serious mistake.
In such situation, the difference in our assessment is estimated as very signif-
icant. A bit different interpretation of similarity should be used in case of the
ventilation. As in antibiotic use, we investigate all incompatibilities of the ven-
tilation mode between corresponding pairs of nodes from both plans. However,
sometimes, according to expert knowledge, we simplified our assessments, e.g.,
respiration unsupported and CPAP are estimated as similar (see Example 36 for
more medical details). More complicated situation is present if we want to judge
the similarity in treatment of PDA. We have to assign the ventilation mode, as
well as the similarity of PDA closing procedure. In summary, any aspect of the
similarity between plans should be taken into account in the specific way and the
domain knowledge is necessary for joining all these similarities (obtained for all
aspects). Therefore, the similarity between plans should be assigned on the basis
of a special ontology specified in a dialog with human experts. Such ontology we
call similarity ontology. Using such similarity ontology we developed methods
for inducing classifiers predicting the similarity between two plans (generated
automatically and proposed by human experts).

In the paper, we assume that each similarity ontology between plans has a
tree structure. The root of this tree is always one concept representing general
similarity between plans. In each similarity ontology there may exist concepts of
two-way type. In this paper, the concepts of the first type will be called internal
concepts of ontology. They are characterized by the fact that they depend on
other ontology concepts. The concept of the second type will be called input
concepts of ontology (in other words the concepts of the lowest ontology level).
The input concepts are characterized by the fact that they do not depend on
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other ontology concepts. Fig. 50 shows an exemplary ontology of similarity be-
tween plans of the treatment of newborn infants with the respiratory failure.
This ontology has been provided by human experts. However, it is also possible
to present some other versions of such ontology, instead of that presented above,
according to opinions of some other group of human experts.
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Fig. 50. An exemplary ontology of similarity between plans of the treatment of
newborn infants with respiratory failure

7.20 Similarity Classifier

Using the similarity ontology (e.g., the ontology presented in Fig. 50), we de-
veloped methods for inducing classifiers predicting the similarity between two
plans (generated automatically and proposed by human experts).

The method for construction of such classifier can be based on a similar-
ity table of plans. The similarity table of plans is the decision table which may
be constructed for any concept from the similarity ontology. The similarity ta-
ble is created in order to approximate a concept for which the table has been
constructed. The approximation of the concept takes place with the help of clas-
sifiers generated for the similarity table. However, because of the fact that in
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Fig. 51. The scheme of the similarity table of plans

the similarity ontology there occur two types of concepts (internal and input),
there are also two types of similarity tables. Similarity tables of the first type
are constructed for internal concepts, whereas the tables of the second type are
constructed for input concepts.

Similarity tables for internal concepts of similarity ontology are constructed
for a certain fragment of similarity ontology which consists of a concept of this on-
tology and concepts on which this concept depends. In the case of ontology from
Fig. 50 it may be for instance the concept Similarity of a symptom treatment of
sepsis and concepts Similarity of corticosteroid use, Similarity of catecholamin
use and Similarity of hemostatic agents use. To simplify further discussion let us
assume that it is the concept C that depends in the similarity ontology on the
concepts C1, ..., Ck. The aim of constructing a similarity table is approximation
of concept C using concepts C1, ..., Ck (see Fig. 51). Condition columns of such
similarity table represent concepts C1, ..., Ck. Any row corresponds to a pair of
plans: generated automatically and proposed by experts. Values of all attributes
have been provided by experts from the set {0.0, 0.1, ..., 0.9, 1.0}. Finally, the
decision column represents the concept C.

Definition 71. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– k is a fixed length of plans in the planning graph PG,
– C is an internal concept, dependent in some similarity ontology on the con-

cepts C1,...,Ck, where C, C1, ..., Ck ⊆ PLAN(PG, k)× PLAN(PG, k).

A similarity table of plans from planning graph PG constructed for the internal
concept C on the basis of the system T is a decision table (U,A, d), where:

– U ⊆ DPLAN(T,PG, k)×DPLAN(T,PG, k),
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– A = {a1, ..., am} is the set of attributes created on the basis of concepts from
the family C1, ..., Cm such that for any i ∈ {1, ..., m} values of ai describe
membership of objects from the set U to the concept Ci and these values are
determined by experts from the set { 0.0, 0.1, ...., 1.0 },

– the values of decision attribute d which also belong to the set { 0.0, 0.1, ....,
1.0 } are proposed on the basis of the dissimilarity function value (proposed
by an expert) of plans for individual objects from the set U .

Let us notice that in the similarity table defined above there are no all the
possible pairs of plans from set DPLAN(T,PG, k)×DPLAN(T,PG, k), but
only a certain selected subset of the set of these pairs. In practice, this limitation
is very necessary because the number of pairs of product DPLAN(T,PG, k)
× DPLAN(T,PG, k) may be so large that the expert is not able to provide
for them all values of decision attribute d. Therefore, usually in the similarity
table there are only pairs selected by the expert which represent typical cases
of determining similarity functions of plans which may be generalized using a
classifier.

The stratifying classifier computed for a similarity table (called a similarity
classifier) can be used to determine the similarity between plans (generated
by our methods of automated planning and plans proposed be human experts)
relatively to a given internal concept C.

Such stratifying classifiers may be constructed for all concepts from the sim-
ilarity ontology which depend, in this ontology, on other concepts. However, we
also need stratifying classifiers for input concepts of ontology, that is, those lying
on the lowest level of the ontology. Hence, they are the concepts which do not
depend on other concepts in this ontology. To approximate them we do not use
other ontology concepts but we apply the features of comparable plans which
are expressed in the form of patterns defined in the language FPPG (see Sec-
tion 7.6). Obviously, such types of patterns are also concepts determined in the
set of pairs of plans. However, they are usually not placed in the similarity on-
tology between plans. Therefore, approximation tables of input concepts of the
similarity ontology should be treated as a specific type of similarity table.

Definition 72. Let us assume that:

– T = (U, A, aid, ≤aid
, at, ≤at , ac) is a temporal information system with

actions,
– PG = (S, A, E) is a planning graph,
– k is a fixed length of plans in the planning graph PG,
– φ1, ..., φm ∈ FPPG(PG) is a family of formulas defined by experts,
– C ⊆ PLAN(PG, k) × PLAN(PG, k) is an input concept of the similarity

ontology between plans.

A similarity table of plans from planning graph PG constructed for the input
concept C on the basis of the system T is a decision table (U,A, d), where:

– U ⊆ DPLAN(T,PG, k)×DPLAN(T,PG, k),
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– A = {a1, ..., am, am+1, ..., a2m} is a set of attributes created on the basis of
formulas φ1, ..., φm, where for any i ∈ {1, ..., 2m} values of ai are computed
in the following way:

∀p = (p1, p2) ∈ U : ai(p) =





1 if i ≤ m and p1 |=FPPG(PG) φi

1 if i > m and p2 |=FPPG(PG) φi

0 otherwise
,

– the values of decision attribute d describe membership of objects from the set
U to the concept C and these values are determined by experts from the set
{ 0.0, 0.1, ...., 1.0 }.
Let us notice that the similarity table defined above is constructed in the

way that concept C is approximated on the basis of the features of both plans
corresponding to a given object from the set U .

It is worth noticing that for approximation of complex concepts from the
similarity ontology one can use also features (attributes) describing relations be-
tween plans. Such features are formulated in a natural language using special
questions about both plans. Examples of such questions are: Were antibiotics
used simultaneously in both plans?, Was the average difference between mechan-
ical ventilation mode in both plans significant?. However, it requires a simple
extension of the language FPPG(PG).

Classifiers constructed for similarity tables corresponding to all concepts from
the similarity ontology may be used to construct a complex classifier which gives
the general similarity between plans (represented by the concept lying in the root
of the similarity ontology). We provide an example of how such a classifier works.
Let us assume that there is a certain similarity ontology between pairs of plans in
which there occur six following concepts: C1, C2, C3, C4, C5 and C6. The concept
C1 depends on concepts C2 and C3, the concept C2 depends on concepts C4 and
C5, and the concept C3 depends on concepts C5 and C6. In this ontology concept
C1 is the concept of general similarity between plans, whereas concepts C4, C5

and C6 are input concepts of the similarity ontology (see Fig. 52).
Firstly, we construct similarity tables for concepts C4, C5, C6 and stratifying

classifiers µC4 , µC5 , µC6 corresponding to them. Let us also assume that there are
given stratifying classifiers µC1 , µC2 , µC3 which were constructed for similarity
tables which correspond to concepts C1, C2 and C3. Tested object u = (p1, p2)
which is a pair of compared plans is classified to the layer of concept C corre-
sponding to it in the following way. At the beginning, the object u is classified
by classifiers µC4 , µC5 and µC6 . This way we obtain values µC4(u), µC5(u) and
µC6(u). Next, values µC4(u) and µC5(u) are used as the values of conditional
attributes in the similarity table constructed for concept C2. Thus, the object
u may be classified by classifier µC2 , which gives us value µC2(u). At the same
time, values µC5(u) and µC6(u) are used as the values of conditional attributes in
the similarity table constructed for concept C3. It gives the possibility to classify
object u by classifier µC3 and obtain value µC3(u). Finally, values µC2(u) and
µC3(u) are used as the values of conditional attributes of the similarity table
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Fig. 52. The scheme of a simple similarity ontology

constructed for concept C1. Thus, the object u may be classified by classifier
µC1 to layer µC1(u).

The complex classifier described above can be used to determine the general
similarity between plans generated by our methods of automated planning and
plans proposed by human experts, e.g., during the real-life clinical treatment
(see Section 7.21).

7.21 Experiments with Medical Data

To verify the effectiveness of presented in this paper methods of automated plan-
ning, we have implemented the algorithms in an Automated Planning library
(AP-lib), which is an extension of the RSES-lib library forming the computa-
tional kernel of the RSES system (see [252, 253]).

It should be emphasized that, in general, automated planning of treatment
is a very difficult and complicated task because it requires extensive medical
knowledge combined with sensor information about the state of a patient. Even
so, the proposed approach makes it possible to obtain quite satisfactory results
in the short-term planning of treatment of infants with respiratory failure. The
reason is that medical data sets have been accurately prepared for purposes
of our experiments using the medical knowledge. For example, the collection
of medical actions, that are usually used during the treatment of infants with
respiratory failure, has been divided into a few groups of similar actions (for ex-
ample: antibiotics, anti-mycotic agents, mechanical ventilation, catecholamines,
corticosteroids, hemostatic agents). It is very helpful in the prediction of actions
because the number of actions is significantly decreased.

The experiments have been performed on the medical data sets obtained from
Neonatal Intensive Care Unit, First Department of Pediatrics, Polish-American
Institute of Pediatrics, Collegium Medicum, Jagiellonian University, Krakow,
Poland (see also Section 6.26). We used one data table, that consists of 11099
objects. Each object of this table describes parameters of one patient in single
time point. There were prepared 7022 situations on the basis of this data table,
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where the plan of treatment has been proposed by human experts during the
real-life clinical treatment.

We have applied the train-and-test method. However, analogously to exper-
iments from Subsection 6.26 the method of dividing data differed slightly from
the standard method described in Section 2.9. Namely, in each experiment the
whole set of patients was randomly divided into two groups (training and tested
one). Each of these groups allowed creating approximately 4000 time windows
which have duration of 7 time points. Time windows created on the basis of
patients from the training part created a training table for a given experiment
(when plans of treatment have been assigned), whereas time windows created on
the basis of patients from the tested part created a test table for the experiment
(when plans have been generated by automated method and expert plans are
known in order to compare both plans)

In the discussed experiments, the distance between time points recorded for
a specific patient was constant (one day). In a single experiment concerning a
patient’s treatment, a 7-point sequence of time points was used. In terms of
planning the treatment each such sequence may be written as s1, a1, s2, a2, s3,
a3, s4, a4, s5, a5, s5, a6, s7, where si (for i = 1, ..., 7) is a patient state and ai

(for i = 1, ..., 6) is a complex medical action performed in the state si. The first
part of the above sequence of states and actions, that is, from state s1 to state
s3, was used by the method of automated planning as the input information
(corresponding to the values of conditional attributes in the classic approach to
constructing classifiers). The remaining actions and states were automatically
generated to create plan (s3, a′3, s′4, a′4, s′5, a′5, s′6, a′6, s′7). This plan may be
treated as a certain type of a complex decision value. Verification of the quality
of the generated plan consisted in comparing plan (s3, a′3, s′4, a′4, s′5, a′5, s′6,
a′6, s′7) with plan (s3, a3, s4, a4, s5, a5, s5, a6, s7). It is worth adding that
a single complex action concerned one time point, meta action concerned two
time points and a single experiment consisted in planning two meta actions.
Hence, in a single experiment four actions were planned (patient’s treatment
for four days). In other words, at the beginning of the automated planning
procedure the information about the patient’s state in the last three days of his
hospitalization was used (s1, s2, s3) together with the information about complex
medical actions undertaken one or two days before (a1, a2). The generated plan
included information about a suggested complex medical action on a given day
of hospitalization (a′3), information about actions which should be undertaken
in the three following days of hospitalization (a′4, a′5, a′6) and information about
the patient’s state anticipated as a result of the planned treatment in the four
following days of hospitalization (s′4, s′5, s′6, s′7).

As a measure of planning success (or failure) in our experiments, we use the
special classifier that can predict the similarity between two plans as a number
between 0.0 (very low similarity between two plans) and 1.0 (very high similarity
between two plans) (see Section 7.20). We use this classifier to determine the
similarity between plans generated by our methods of automated planning and
plans proposed be human experts during the real-life clinical treatment. In order
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Intervals Average percent Average similarity
of plans of plans

[0.0, 0.2] 12.1% ± 4.5% 0.139 ± 0.002
(0.2, 0.4] 6.2% ± 1.5% 0.349 ± 0.003
(0.4, 0.6] 7.1% ± 1.7% 0.563 ± 0.002
(0.6, 0.8] 5.8% ± 0.9% 0.773 ± 0.004
(0.8, 1.0] 68.9% ± 5.6% 0.987 ± 0.002

Table 10. The average percent of plans belonging to the specified interval and
the average similarity of plans in this interval

to determine the standard deviation of the obtained results each experiment was
repeated for 10 random divisions of the whole data set.

The average similarity between plans for all tested situations was 0.802. The
corresponding standard deviations was 0.041. The coverage of tested situation
by generated plans was 0.846 with standard deviation 0.018.

Due to the fact that the average similarity is not too high (less than 0.9) and
the standard deviation is relatively high for our algorithm, we present also the
distribution of the results. We describe results in such a way that we present
how many generated plans belong to the specified interval of similarity. For this
reason we divided interval [0.0, 1.0] into 5 equal intervals, i.e., [0.0, 0.2], [0.2,
0.4], [0.4, 0.6], [0.6, 0.8] and [0.8, 1.0]. Table 10 shows the average percent of the
plans belonging to the specified interval and the average similarity of plans in
this interval.

It is easy to see that some group of plans generated automatically is not
enough similar to the plans proposed by the experts. If we assume that inade-
quate similarity is lower than 0.6, in this group we found about 25% of all plans
(see Table 10). To explain this issue, we should observe more carefully plans,
which are incompatible with the proposals prepared by experts. In practice,
the main medical actions influencing the similarity of plans in accordance with
ontology of the similarity from Fig. 50 are mechanical ventilation, antibiotics,
anti-mycotic agents and macrolide antibiotics. Therefore, it may be interesting
how the treatment similarity changed in the range of applying these actions in
the individual intervals of similarity between the plans.

On Fig. 53 we can see that a significant incompatibility of treatment plans
most often concerns mechanical ventilation and perhaps antibiotic therapy - the
situation when a patient develops a sudden and severe infection (e.g., sepsis).
Such circumstances cause rapid exacerbation of respiratory failure are required
higher level of mechanical ventilation and immediate antibiotic treatment. For
example, although microbiological confirmation of current infection is achieved
after 2-3 days, physician starts treatment after first symptoms of suspected dis-
ease and often intensify mechanical ventilation mode. It would seem that the
algorithms of automated planning presented in this paper may imitate the strat-
egy of treatment described above. Unfortunately, in practice, these algorithms
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Fig. 53. The average similarity of plans in the specified interval for medical
actions

are not able to learn this strategy for a lot of information because they were
not introduced to the base records or were introduced with delay. For instance,
hemoglobin saturation which is measured for the whole time, as the dynamic
marker of patients respiratory status, was not found in the data, whilst results
of arterial blood gases were introduced irregularly, with many missing values. So,
the technical limitation of the current data collection lead to the intensive work
modifying and extending both, the equipment and software, served for gathering
clinical data. It may be expected that in several years the automated planning
algorithms, described in this paper, will achieve much better and useful results.

A separate problem is a relatively low coverage of the algorithms described
in this paper which equals averagely 0.846. Such a low coverage results from
the specificity of the automated planning method used which synchronizes the
treatment of four diseases (RDS, PDA, sepsis and Ureaplasma). We may identify
two reasons of a low coverage. Firstly, because of data shortage the algorithm
in many situations may not synchronize the treatment of the above mentioned
diseases. It happens this way because each proposed comparison of plans may be
debatable in terms of the knowledge gathered in the system. Therefore, in these
cases the system does not suggest any treatment plan and says I do not know.
The second reason for low coverage is the fact that the automated planning
method used requires application of a complex classifier which consists of many
classifiers of lesser complexity. Putting these classifiers together often causes the
effect of decreasing the complex classifier coverage. For instance, let us assume
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that making decision for tested object u requires application of complex classifier
µ, which consists of two classifiers µ1 and µ2. We apply classifier µ1 directly to
u, whereas classifier µ2 is applied to the results of classification of classifier
µ1. In other words, to make classifier µ2 work for a given tested object u we
need value µ1(u). Let us assume that the coverage for classifiers µ1 and µ2

equals respectively 0.94 and 0.95. Hence, the coverage of classifier µ is equal
0.94 ·0.95 = 0.893, that is the coverage of classifier µ is smaller than the coverage
of classifier µ1 as well as the coverage of classifier µ2.

It is worth noticing that applying other automated planning methods (see
[105, 106]), a higher coverage for the data sets analyzed here may be obtained.
However, in this paper we prefer algorithms EEFS and EEFSS, because they
need not only data sets but also great domain knowledge to work. Moreover,
the quality of their performance depends greatly on the provided domain knowl-
edge. Therefore, it may be expected that providing greater and more reliable
knowledge and more extensive data sets on the input of this algorithm will allow
the quality of automatically generated treatment plans to be more similar to the
quality of treatment plans proposed by the medical experts.

In summation, we conclude that experimental results showed that the pro-
posed automated planning method gives good results, also in the opinion of
medical experts (compatible enough with the plans suggested by the experts),
and may be applied in medical practice as a supporting tool for planning the
treatment of infants suffering from respiratory failure.

8 Summary

The aim of this paper was to present new methods of approximating complex
concepts on the basis of experimental data and domain knowledge which is
mainly represented using concept ontology.

At the beginning of the paper a number of methods of constructing clas-
sical classifiers were overviewed (see Section 2) and methods of constructing
stratifying classifiers were presented (see Section 3). Next, in Section 4, a gen-
eral methodology of approximating complex concepts with the use of data sets
and domain knowledge was presented. In the further part of the paper, this
methodology was applied to approximate spatial complex concepts (see Sec-
tion 5), spatio-temporal complex concepts for unstructured and structured ob-
jects (see Section 6), to identify the behavioral patterns for this type of objects
(see Section 6), and to the automated planning of behavior of such objects when
the states of objects are represented by spatio-temporal concepts which require
an approximation (see Section 7).

We have also described the results of computer experiments conducted on
real-life data sets which were obtained from the road traffic simulator (see Ap-
pendix A) and on medical data which were made available by Neonatal Intensive
Care Unit, First Department of Pediatrics, Polish-American Institute of Pedi-
atrics, Collegium Medicum, Jagiellonian University, Krakow, Poland.
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In light of theoretical discourse and the results of computer experiments
presented in the paper the following conclusions may be drawn:

1. The methodology of approximating complex concepts with the use of data
sets and domain knowledge (represented mainly by a concept ontology),
which was proposed in this paper (see Section 4), fills the gap which exists
between spatio-temporal complex concepts and sensor data. It enables an
effective approximation of complex concepts; however, it requires a domain
knowledge represented mainly in the form of a concept ontology.

2. Stratifying classifiers proposed in the paper (see Section 3) are effective tools
for stratifying concepts, that is, they enable to classify objects to different
layers of the concept corresponding to different degrees of certainty of mem-
bership of a tested object to the concept. Particularly noteworthy here is
the new method of constructing such classifiers based on shortening of de-
cision rules with respect to different coefficients of consistency. It makes an
automatic stratification of concepts possible.

3. The method of approximation of complex spatial concepts, described in the
paper, with the help of approximate reasoning schemes (AR-schemes) leads
to better results than the classical methods based on decision rules induced
directly from sensor data because the quality of classifier classification based
on AR-schemes is higher than the quality of classification obtained by clas-
sifiers based on decision rules, particularly for small decision classes repre-
senting atypical cases in the recognition of which we are most interested in,
e.g., a dangerous driving vehicle on a highway (see Section 5). Moreover, for
larger data sets, the time of constructing classifiers based on AR-schemes is
much shorter than the time of inducing classifiers based on decision rules,
and the structure of classifiers based on AR-schemes is less complex than the
structure of classifiers based on decision rules. It is also worth mentioning
that the classifiers based on AR-schemes are more robust (stable or tolerant)
when it comes to changes in training data sets serving the construction of
classifiers, that is, a classifier based on AR-schemes, constructed for one data
set, often proves itself good for another data set. For example, a classifier
constructed for data generated from the traffic simulator with one simula-
tion scenario proves itself useful in classification of objects generated by the
simulator with the use of another simulation scenario.

4. The methodology of modeling complex object behavior with the use of be-
havioral graphs of these objects, proposed in the paper (see Section 6), is a
convenient and effective tool for identifying behavioral patterns of complex
objects. On the one hand this methodology, enables to represent concepts
on a high abstraction level, and on the other hand, owing to the use of a
domain knowledge, it enables to approximate these concepts on the basis of
sensor data and using a domain knowledge.

5. The sweeping method around complex objects is a very fast and convenient
method of isolating objects with complex structure from complex dynamical
systems (see Section 6). A certain difficulty in using this method is the fact
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that each of its applications requires appropriate sweeping heuristics which
must be proposed by the expert.

6. The method of eliminating complex objects in behavioral pattern identifi-
cation based on the rules of fast elimination of behavioral patterns greatly
accelerates the identification of behavioral patterns in complex dynamical
systems monitoring (see Section 6). A certain inconvenience of applying this
method is the fact that although it is based on rules of fast elimination of
behavioral patterns obtained from data, in order to determine those rules we
need special temporal patterns supporting the process of elimination, and
the patterns themselves must be proposed by experts.

7. The methods of automated planning of complex object behavior proposed
in the paper facilitate an effective planning of behavior of both unstructured
and structured objects whose states are defined in a natural language us-
ing vague spatio-temporal conditions (see Section 7). The authenticity of
conditions of this type is usually not possible to be verified on the basis
of a simple analysis of available information about the object and that is
why these conditions must be treated as spatio-temporal complex concepts
and their approximation requires methods described in this paper which are
based on data sets and domain knowledge.

8. The method of solving conflicts between actions during automated planning
of complex object behavior, based on a domain knowledge and data sets
(see Section 7), is ideal for the situation where the choice of one action from
many possible actions, to be performed at a given state should not be random
but it should be made in accordance with the domain knowledge (as in the
example of planning of a patient’s treatment). A significant novelty of the
method presented here in relation to the already existing ones is the fact
that in order to solve conflicts between actions we use classifiers based on
data sets and domain knowledge.

9. The method of synchronizing plans constructed for parts of a structured
object, described in the paper, is an important element of the method of
planning of structured object behavior (see Section 7). If we assume that
plans constructed for parts of a structured object are processes of some
kind, then the method of synchronizing those plans is a method of syn-
chronizing processes corresponding to the parts of the structured object. It
should be emphasized, however, that the significant novelty of the method
of synchronizing processes presented herein in relation to the ones known
from literature is the fact that the synchronization is carried out by using
classifiers determined on the basis of data sets and domain knowledge.

10. The method of partial reconstruction of a plan, proposed in the paper, can ac-
celerate the execution of plans constructed for complex objects significantly
(see Section 7). It is due to the fact that in the case of incompatibility of the
state occurring in the plan with the actual state of the complex object, the
plan needs not be generated from the beginning but it may be reconstructed
using the repair plan.

11. The method of similarity relation approximation based on data set usage
and a domain knowledge expressed in the form of a concept ontology which
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has frequently been used throughout our research is an important proposal
of solving a difficult problem of similarity relation approximation.

The main advantage of the methods of construction of classifiers for spatial
and spatio-temporal complex concepts, presented in the paper, is the fact that
besides data sets they also intensely use a domain knowledge expressed, above
all, in the form of a concept ontology. Although using a domain knowledge causes
an increase in effectiveness of the methods presented in this paper, it can be,
however, a source of many difficulties arising during the application of those
methods. The difficulties arise from the fact that the domain knowledge is often
available only to the experts from the given domain. Therefore, projects which
use the methods described in this paper require an active participation of experts
from different domains. Hence, difficulties may often occur to incline experts who
are consent to devote their time to participate in a computer science project.

In order to overcome these difficulties, there is a need of construction of
special methods of data analysis which might be useful in automatic search of
knowledge to replace, at least partially, the domain knowledge obtained from
experts. In the case of methods presented herein, we mean the methods of data
analysis which allow an automatic detection of concepts, significant for construc-
tion of complex classifiers. For example, we are concerned with the following data
analysis methods here:

1. Automatic detection of spatial or spatio-temporal concepts which may be
used in approximating other more complex concepts.

2. Automatic detection of complex spatio-temporal concepts occurring in be-
havioral patterns (understood as behavioral graphs) and temporal depen-
dencies among those concepts.

3. Automatic detection of complex spatio-temporal concepts which are states
of unstructured or structured objects in automated planning of behavior of
such objects.

4. Automatic detection of complex spatio-temporal concepts which are meta-
actions to be performed for structured objects in automated planning of
behavior of such objects.

We plan to construct the data analysis methods mentioned above in the
future.

In summation, it may be concluded that in executing real-life projects related
to the construction of the intelligent systems supporting decision-making, apart
from data sets it is necessary to apply domain knowledge. Without its applica-
tion successful execution of many such projects becomes extremely difficult or
impossible. On the other hand, appropriate space must be found for the auto-
mated methods of classifier construction wherever it is feasible. It means, thus,
finding a certain type of “the golden mean” to apply appropriate proportions in
domain knowledge usage and automated methods of data analysis. Certainly, it
will determine the success or failure of many projects.
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A Road Simulator

Road simulator is a tool for generating data sets recording vehicle movement on
the road and at the crossroads (see [188, 262]). Such data is extremely crucial in
testing complex decision systems monitoring the situation on the road that are
working on the basis of information coming from different devices. The simulator
was constructed by the author of this paper.

Main road

Vehicle

Minor road

STOP sign

Fig. 54. The board of simulation

Driving simulation takes place on a board (see Fig. 54) which presents a
crossroad together with the access roads.

During the simulation the vehicles may enter the board from all four direc-
tions, that is, East, West, North, and South. The vehicles coming to the crossroad
from South and North have the right of way in relation to the vehicles coming
from West and East.

Each of the vehicles entering the board has only one aim, i.e., to drive through
the crossroad safely and to leave the board. The simulation takes place step by
step and at each of its steps the vehicles may perform the following maneuvers
during the simulation: passing, overtaking, changing direction (at the crossroad),
changing lane, entering the traffic from the minor road into the main road,
stopping, and pulling out.
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Planning further steps of each vehicle takes place independently at every step
of the simulation. Each vehicle is “observing” the surrounding situation on the
road, keeping in mind its destination and its own parameters (driver’s profile),
makes an independent decision about its further steps; whether it should accel-
erate, decelerate and what (if any) maneuver should be commenced, continued,
ended or stopped.

Making decisions concerning further driving, a given vehicle takes under con-
sideration its parameters and the driving parameters of five vehicles next to it
which are marked by FR1, FR2, FL, BR, and BL (see Fig. 55).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FR1 

BR 

BL 

A given 
vehicle 

FR2 
FL 

Fig. 55. A given vehicle and five vehicles next to it

During the simulation the system registers a series of parameters of the local
simulations, that is, simulations connected with each vehicle separately, as well
as two global parameters of the simulation, that is, parameters connected with
driving conditions during the simulation. The value of each simulation parameter
may vary and can be treated as a certain attribute taking values in a specified
value set.

We associate the simulation parameters with the readouts of different mea-
suring devices or technical equipment placed inside the vehicle or in the outside
environment (e.g., by the road, in a helicopter observing the situation on the
road, in a police car). These are devices and equipment playing the role of de-
tecting devices or converters meaning sensors (e.g., a thermometer, range finder,
video camera, radar, image, and sound converter). The attributes taking the
simulation parameter values, by analogy to devices providing their values, are
called sensors.

The exemplary sensors are the following: initial and current road (four roads),
distance from the crossroad (in screen units), current lane (two lanes), position
of the vehicle on the road (values from 0.0 to 1.0), vehicle speed (values from
0.0 to 10.0), acceleration and deceleration, distance of a given vehicle from the
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vehicles FR1, FL, BR, and BL and between FR1 and FR2 (in screen units),
appearance of the vehicle at the crossroad (binary values), visibility (expressed
in screen units, values from 50 to 500), humidity (slipperiness) of the road (three
values: lack of humidity (dry road), low humidity, and high humidity).

If, for some reason, the value of one of the sensors is not determined, the
value of the parameter will become equal to NULL (missing value).

Apart from sensors, the simulator registers a few more attributes whose values
are determined using the sensor values in a way determined by an expert. These
parameters take the binary values and are therefore called concepts in the present
simulator version. The results returned by testing concepts are very often in the
form YES, NO or DOES NOT CONCERN (NULL value).

Here are exemplary concepts:

1. Is a vehicle forcing the right of way at the crossroad?
2. Is there free space on the right lane in order to end the overtaking maneuver?
3. Will a vehicle be able to overtake easily before the oncoming car?
4. Will a vehicle be able to brake before the crossroad?
5. Is the distance from the vehicle FR1 too short or do we predict that it may

happen shortly?
6. Is a vehicle overtaking safely?
7. Is a vehicle driving safely?

Besides binary concepts, simulator registers for any such concept one special
attribute that approximates binary concept by six linearly ordered layers: cer-
tainly YES, rather YES, possibly YES, possibly NO, rather NO, and certainly
NO.

Some concepts related to the situation of the road are simple and classifiers
for them can be induced directly from sensor measurement but for more complex
concepts this is infeasible. In searching for classifiers for such concepts domain
knowledge can be helpful. The relationships among concepts represented in a
domain knowledge can be used to construct hierarchical relationship diagrams.
Such diagrams can be used to induce multi-layered classifiers for complex con-
cepts (see, e.g., [289, 290]). In Fig. 56 there is an exemplary relationship diagram
for the concepts mentioned above .

The concept specification and concept dependencies are usually not given
automatically in accumulated data sets. Therefore, they should be extracted
from a domain knowledge. Hence, the role of human experts is very important
in our approach.

During the simulation, when a new vehicle appears on the board, its so-
called driver’s profile is determined. It may take one of the following values: a
very careful driver, a careful driver, and a careless driver. Driver’s profile is the
identity of the driver and according to this identity further decisions as to the
way of driving are made.

Driver’s profile is determined at the beginning when the vehicle appears on
the board and cannot be changed until it disappears from the board.
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Fig. 56. The relationship diagram for the presented concepts

For a given vehicle the driver’s profile is determined randomly by the follow-
ing probability distribution: a very careful driver 0.4, careful driver 0.25, and
careless driver 0.35.

Depending on the driver’s profile and weather conditions (humidity of the
road and visibility), speed limits are determined which cannot be exceeded.

The humidity of the road influences the length of braking distance for de-
pending on humidity, different speed changes take place within one simulation
step, with the same braking mode.

The driver’s profile influences the speed limits dictated by visibility. If another
vehicle is invisible for a given vehicle, this vehicle is not taken into consideration
in the independent planning of further driving by a given car. Because this may
cause dangerous situations, depending on the driver’s profile, there are speed
limits for the vehicle.

The data generated during the simulation are stored in a data table (infor-
mation system). Each row of the table depicts the situation of a single vehicle
and the sensor and concept values are registered for a given vehicle and the
vehicles FR1, FR2, FL, BL, and BR (associated with a given vehicle). Within
each simulation step, descriptions of situations of all the vehicles on the road are
saved to a file.
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B Neonatal Respiratory Failure

The new possibilities in medical intensive care have appeared during last decades
thanks to the progress in medical and technical sciences. This progress allowed us
to save the live of prematurely born infants including the smallest born between
the 20th and the 24th week of gestation with the birth weight above 500g.

Prematurely born infants demonstrate numerous abnormalities in their first
weeks of life. Their survival, especially without severe multiorgan complications
is possible with appropriate treatment. Prematurity can be characterized as
inappropriate maturity of systems and organs leading to their dysfunction after
birth.

The respiratory system dysfunction appearing in the first hours of life and
leading to respiratory failure is the most important single factor limiting survival
of our smallest patients. The respiratory failure is defined as inappropriate blood
oxygenation and accumulation of carbon dioxide and is diagnosed based on ar-
terial blood gases measurements. Clinical symptoms increased rate of breathing,
accessory respiratory muscles use as well as X-ray lung examination are also
included in assessment of the severity of respiratory failure (see, e.g, [126] for
more details).

The most important cause of respiratory failure in prematurely born infants
is RDS (respiratory distress syndrome). RDS is evoked by lung immaturity and
surfactant deficiency. The other co-existing abnormalities PDA5 (patent duc-
tus arteriosus), sepsis (generalized reaction on infection leading to multiorgan
failure), and Ureaplasma lung infection (acquired during pregnancy or birth)
may exacerbate the course of respiratory failure. Each of these conditions can be
treated as an unrelated disease requiring a separate treatment. But they co-exist
in a patient very often, so in a single patient we may deal with their combination,
for example, RDS + PDA + sepsis. In the holistic therapeutic approach, it is
important to synchronize the treatment of the co-existing abnormalities, which
can finally lead to cure from the respiratory failure.

The respiratory failure dominates in clinical course of prematurity but is not
the only factor limiting the success of treatment. Effective care of the prema-
turely born infant should include all co-existing abnormalities such as infections,
both congenital and acquired, water-electrolyte and acid-base imbalance, circula-
tory, kidney, and other problems. All these factors are related and they influence

5 PDA (patent ductus arteriosus) is a heart problem that occurs soon after birth in
some infants. In PDA, there is an abnormal circulation of blood between two of the
major arteries near the heart. Before birth, the two major arteries, i.e., the aorta and
the pulmonary artery, are normally connected by a blood vessel called the ductus
arteriosus, which is an essential part of the fetal circulation. After birth, the vessel
is supposed to close within a few days as part of the normal changes occurring in the
infant’s circulation. In some infants, however, the ductus arteriosus remains open
(patent). If an infant has a PDA, but has an otherwise normal heart, the PDA may
shrink and go away completely. If a PDA does not shrink, or is due to causes other
than prematurity, surgery may be needed. This surgery is called ligation and involves
placing a suture around the ductus to close it (see, e.g, [126] for more details).
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one another. The care of the prematurely born infants in their first days of life
requires continuous analysis of plenty of the parameters including vital sings and
the results of the additional tests. These parameters can be divided into station-
ary (e.g., gestational age, birth weight, Apgar score) and continuous changing in
time. The continuous values can be examined on the discrete (e.g., blood gases)
or the continuous basis, e.g., with the monitoring devices (oxygen hemoglobin
saturation, hear rate, blood pressure, temperature, and lung mechanics). The
neonatal care includes assessment of imagine techniques results (ultrasound of
the brain, echocardiography, chest X-ray). The global analysis should also in-
clude current methods of treatment applied in the particular patients. They
may have qualitative (e.g., administration of medication) or quantitative (e.g.,
respiratory settings) characteristics.

Everyday analysis of numerous parameters requires great theoretical knowl-
edge and practical experience. It is worth mentioning that this analysis should
be quick and precise. Assessment of the patient’s state is performed very often
under rush and stress conditions.

A very important element of this analysis is an appropriate assessment of the
risk of death of the small patient caused by the respiratory failure during next
hours or days. The appropriate assessment of this risk leads to the decision of a
particular method and level of treatment. The life of a sick child depends on this
quick and correct decision. It should be emphasized that the correct assessment
of the risk of death depends not only on analysis of the current clinical status,
lab tests, and imagine techniques results but also on the dynamics observed
lately and the character of changes (e.g., progression of the blood gases indices
of respiratory failure). The additional risk parameters such as birth weight are
also important.

Computer techniques can be very useful in the face of difficulties in an ef-
fective data analysis. They may provide a support for the physician in everyday
diagnostic-therapeutic process both as a collecting, storing and patient’s data
presenting tools (e.g., Neonatal Information System [246]) and as a tool of quick,
automatic and intelligent analysis of this data. This approach might enable a
computer presentation of some information based on the observed patterns which
might be helpful in planning of the treatment. An example is the tool detecting
patterns of changes in the newborn clinical status which lead to death with high
probability. This kind of patterns is called the risk patterns (see Section 6.23). In
this approach, a given patient is treated as an investigated complex dynamical
system, whilst diseases of this patient (RDS, PDA, sepsis, Ureaplasma, and the
respiratory failure) are treated as complex objects changing and interacting over
time (see Section 6.22).
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105. G. Góra, J. G. Bazan, P. Kruczek, S. Bazan-Socha, A. Skowron, J. Pietrzyk.
Case-based planning of treatment of infants with respiratory failure. In: L. Czaja
(Ed.), Proceedings Workshop on Concurrency, Specification, and Programming
(CS&P’07), September 27-28, ÃLagów, Poland. Warsaw University, Warsaw, 2007,
pp. 223–234.
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