Przeglądanie według Temat "salivary glands"
Aktualnie wyświetlane 1 - 2 z 2
- Wyniki na stronie
- Opcje sortowania
Pozycja Effect of lipopolysaccharide on the development of oxidativenitrosative stress in salivary glands and soft periodontal tissues of rats under conditions of water avoidance stress(Publishing Office of the University of Rzeszow, 2024-06) Pletnov, Vadym; Tkachenko, Olexiy; Akimov, Oleh; Mykytenko, AndriiIntroduction and aim. Violation in the salivary glands will inevitably cause changes in periodontium, and periodontitis can disrupt the functioning of the salivary glands. The purpose of the work is to evaluate changes in NO-synthase and arginase activities, pro- and antioxidant balance in rat salivary glands and soft periodontal tissues during administration of bacterial lipopolysaccharide (LPS) and water avoidance stress (WAS) modeling. Material and methods. The experiment was performed on 24 rats. The animals were divided into 4 groups: control, WAS, animals injected intraperitoneally with 0.4 μg/kg of bacterial LPS of Salmonella typhi, WAS+LPS. Results. Water avoidance stress led to decrease of inducible NO-synthase (iNOS) activity in salivary glands by 1.63 times, but decreased arginase activity by 1.15 times, superoxide production increased by 1.53 times, catalase activity decreased by 1.2 times, and malonic dialdehyde (MDA) increased by 1.19 times compared to the control. Lipopolysaccharide led to increase of constitutive NO-synthases (cNOS) activity in salivary glands by 1.48 times, but decreased arginase activity by 6.15 times, catalase activity increased by 2.6 times and superoxide dismutase activity decreased by 2.74 times, and MDA increased by 6.84 times compared to the control. Water avoidance stress + LPS in salivary glands led to decrease of cNOS and arginase activity by 1.09 and 1.19 times, respectively, superoxide production increased by 1.88 times, catalase and superoxide dismutase activity decreased by 1.06 times and 1.34 times, respectively, and MDA increased by 2.44 times compared to the control. Water avoidance stress led to increase of iNOS activity in periodontium by 1.44 times and arginase activity decreased by 1.37 times, superoxide production increased 1.32 times, catalase activity and superoxide dismutase activities decreased by 1.27 times and by 1.53 times, respectively, and MDA increased by 1.31 times compared to the control. Lipopolysaccharide led to increase of iNOS activity in the periodontium by 3.88 times, arginase activity decreased by 2.69 times, superoxide production increased 1.64 times, catalase activity increased by 4.32 times, and MDA increased by 4.51 times compared to the control. Water avoidance stress + LPS in periodontium led to increase of iNOS and cNOS activities by 1.95 times and 1.53, respectively, arginase activity decreased by 1.39 times, superoxide production increased 1.66 times, catalase activity increased by 1.11 times, and MDA increased by 1.53 times compared to the control. Conclusion. The combination of LPS and WAS leads to changes in NO production and oxidative stress in salivary glands and the periodontium.Pozycja Labial salivary gland biopsy in the diagnosis of Sjögren’s syndrome(Wydawnictwo Uniwersytetu Rzeszowskiego, 2019) Błochowiak, Katarzyna; Sokalski, JerzyIntroduction. Labial salivary gland biopsy is used for diagnosis of Sjogren’s syndrome (SS) and lymphoma accompanying SS. Aim. The aim of this study was to present the main techniques used for taking labial salivary gland biopsies in the diagnosis of SS with respect to their advantages, histologic criteria, validation, complications, and their usefulness for diagnostic procedures, monitoring disease progression, and treatment evaluation. Material and methods. This study is based on analysis of literature. Results. The microscopic confirmation of SS is based on the presence of focal lymphocytic sialadenitis (FLS) with a focus score ≥1 per 4 mm2 of glandular tissue. A lymphocytic focus is defined as a dense aggregate of 50 or more lymphocytes adjacent to normal-appearing mucous acini in salivary gland lobules that lacked ductal dilatation. Other histopathological features of SS are lymphoepithelial lesions and a relative decrease of <70% IgA + plasma cells. Labial salivary gland biopsy is characterized by high specificity, a positive predictive value, and an average sensitivity of 79% in SS. Conclusion. It can be also valuable in diagnosing B-cell mucosa-associated lymphoid tissue (MALT) lymphomas but it is not recommended for the monitoring of SS progression and the effectiveness of the treatment. Persistent lower lip hypoesthesia is the most severe complication of labial salivary gland biopsy.