Przeglądanie według Temat "melatonin"
Aktualnie wyświetlane 1 - 6 z 6
- Wyniki na stronie
- Opcje sortowania
Pozycja Blaski i cienie światła niebieskiego(Uniwersytet Rzeszowski: Południowo-Wschodni Oddział Polskiego Towarzystwa Inżynierii Ekologicznej z siedzibą w Rzeszowie, 2017) Wolska, Agnieszka; Sawicki, DariuszW widmie promieniowania widzialnego pasmo światła niebieskiego zawiera się w przedziale od ok. 440 nm do ok. 490 nm. Od ok. 2000 r. zaczęły pojawiać się doniesienia naukowe wykazujące na istotne znaczenie światła niebieskiego dla uprawy roślin, dla zdrowia człowieka i jego chronobiologii. Wykazano, że światło niebieskie może wpływać zarówno pozytywnie na stan zdrowia człowieka (leczenie zaburzeń snu i cyklu okołodobowego, poprawa sprawności psychofizycznej i czujności) jak i negatywnie (potencjalne uszkodzenie fotochemiczne siatkówki oka, rozwój nowotworów hormonozależnych). Artykuł przedstawia wybrane aspekty sposobu oddziaływania światła niebieskiego na organizm człowieka oraz skutków ekspozycji na to światło. Skutków zarówno pozytywnych jak i negatywnych.Pozycja Praca zmianowa – czy to także jest skażenie światłem?(Uniwersytet Rzeszowski: Południowo-Wschodni Oddział Polskiego Towarzystwa Inżynierii Ekologicznej z siedzibą w Rzeszowie, 2017) Skwarło-Sońta, KrystynaProblem „skażenia światłem” (zanieczyszczenia świetlnego, ALAN) pojawił się jako konsekwencja wprowadzenia oświetlenia elektrycznego, modyfikującego wszystkie obszary życia. Tymczasem nasz organizm jest dostosowany do regularnie następujących po sobie okresów dnia i nocy, dzięki obecności endogennego mechanizmu tak porządkującego przebieg procesów życiowych, aby przypadały na optymalne pory doby. Jest nim molekularny zegar biologiczny, zlokalizowany w SCN czyli podwzgórzowych jądrach nadskrzyżowaniowych, synchronizowany z warunkami zewnętrznymi za pośrednictwem światła. Informacja świetlna, odbierana przez specjalne receptory siatkówkowe, jest kierowana via SCN do szyszynki, gdzie powstaje „hormon ciemności”, melatonina, która reguluje wiele procesów fizjologicznych, dopasowując ich przebieg do aktualnej sytuacji środowiskowej. Obecność ALAN, emitowanego przez wiele urządzeń elektronicznych lub podczas nocnej pracy zmianowej, zaburza rytm syntezy melatoniny a w konsekwencji funkcjonowanie zegara biologicznego i regulację wielu procesów fizjologicznych. Skutkuje to rozwojem chorób tzw. cywilizacyjnych, do których należą nowotwory, choroby metaboliczne, zaburzenia snu i depresja.Pozycja Właściwości światła niebieskiego(Uniwersytet Rzeszowski: Południowo-Wschodni Oddział Polskiego Towarzystwa Inżynierii Ekologicznej z siedzibą w Rzeszowie, 2017) Janosik, Elżbieta; Marzec, StanisławŚwiatło niebieskie stanowi składową widma promieniowania słonecznego oraz widm wielu źródeł sztucznych. Oprócz generowania wrażeń wzrokowych, ma zdolność oddziaływania na organizm człowieka jeszcze w innym charakterze. Doniesienia naukowe stwierdzają możliwość wpływu światła niebieskiego m.in. na przebieg rytmu biologicznego, na samopoczucie osób starszych, na proces leczenia zmian skórnych. Jednak najlepiej rozpoznanym aspektem oddziaływania światła niebieskiego na człowieka jest jego zdolność do wywoływania uszkodzeń siatkówki oka. W środowisku pracy, domowym i komunalnym stosuje się liczne źródła technologiczne czy źródła oświetleniowe nowej generacji, które w swoim widmie zawierają światło niebieskie, dlatego światło to można uznać za powszechnie występujący czynnik, mogący zagrażać zdrowiu człowieka. W artykule przytoczono wyniki przeglądu literatury oraz informacji w mediach o oddziaływaniu światła niebieskiego na człowieka, celem przybliżenia tego tematu szerszej grupie społeczeństwa.Pozycja Wpływ tlenku węgla na ekspresję genów gonadotropin i gonadoliberyny w centralnym układzie nerwowym świniodzika w okresie lata i zimy(2014-09-15) Romerowicz-Misielak, MariaBadanie biologicznego fenomenu sezonowej reprodukcji i mechanizmów leżących u jego podstaw obejmuje wiele zagadnień. Wśród nich znajdują się: identyfikacja czynników środowiskowych, które regulują te procesy oraz próby wyjaśnienia neurobiologicznej drogi odbierania i przetwarzania sygnałów środowiskowych. Fotoperiod jest głównym i najbardziej wiarygodnym czynnikiem synchronizującym roczne cykle reprodukcyjne sezonowo rozmnażających się zwierząt. Mechanizmy tej regulacji nie są do końca poznane. Dotychczasowe badania wskazują, że w fotoperiodycznej synchronizacji aktywności rozrodczej bierze udział nie jeden a co najmniej kilka systemów regulacyjnych, które mają swój początek w siatkówce oka i kończą się w generatorze pulsów GnRH. Badania przeprowadzone w ramach niniejszej pracy są następstwem wykazania sezonowej zmienności sekrecji CO w obszarze oka i mają za cel określenie drogą pośrednią czy tlenek węgla drogą przeciwprądowego przenikania w obszarze zatoki jamistej może bezpośrednio docierać do struktur mózgowych i wpływać na regulacje fizjologiczne u samców związane z rozrodem. Do doświadczeń użyto 48 dojrzałych płciowo samców krzyżówki dzika europejskiego i świni domowej. Zwierzęta zostały przydzielone do dwóch analogicznych grup doświadczalnych. W doświadczeniu pierwszym prowadzono 48-godzinną infuzję do zatoki żylnej oka autologicznego osocza krwi o doświadczalnie podwyższonym stężeniu tlenku węgla. Taka sama procedura eksperymentalna została przeprowadzona na osobnych grupach zwierząt w okresie długich (czerwiec n=6) oraz krótkich (grudzień n=6) dni świetlnych. Odniesieniem do obu grup eksperymentalnych były prowadzone równolegle kontrolne grupy zwierząt (czerwiec n=6; grudzień n=6), którym w tych samych warunkach do zatoki żylnej oka przez 48 godzin infundowano autologiczne osocze. W doświadczeniu drugim prowadzono 48-godzinną infuzję do zatoki żylnej oka autologicznej krwi poddanej naświetlaniu światłem LED. Taka sama procedura eksperymentalna została przeprowadzona na osobnych grupach zwierząt w okresie długich (czerwiec; n=6) oraz krótkich (grudzień; n=6) dni świetlnych. Odniesieniem do obu grup eksperymentalnych były prowadzone równolegle kontrolne grupy zwierząt (czerwiec n=6; grudzień n=6), którym w tych samych warunkach do zatoki żylnej oka przez 48 godzin infundowano autologiczną krew. W każdej grupie doświadczalnej, w trakcie 48-godzinnej infuzji, od zwierząt w odstępach 2-godzinnych pobierano krew krążenia obwodowego do analiz stężenia hormonu luteotropowego, folikulotropowego oraz melatoniny. Po zakończeniu części eksperymentalnej w celu analizy ekspresji genów gonadoliberyny (GnRH), jej receptora (GnRH-R) oraz podjednostek gonadotropin (α, Lhβ, Fshβ) od zwierząt, poubojowo, pobierano przysadkę mózgową oraz podwzgórze. Tkanki zamrażano w ciekłym azocie i przechowywano w temperaturze -80ºC do momentu wykonania analizy ekspresji genów. Stężenie hormonów w żylnej krwi obwodowej oznaczano metodą radioimmunologiczną. Ekspresję genów gonadoliberyny (GnRH), jej receptora (GnRH-R) oraz podjednostek gonadotropin (α, Lhβ, Fshβ) w tkankach podwzgórza oraz przysadki mózgowej oznaczono metodą Real-Time PCR. Wyniki badań wykazały, że doświadczalne zwiększenie stężenia CO we krwi żylnej odpływającej z oka do żylnej zatoki jamistej okołoprzysadkowego kompleksu naczyniowego u obu grup doświadczalnych samców krzyżówek świni domowej i dzika, spowodowało zarówno w okresie krótkich jak i długich dni świetlnych zmiany w poziomie ekspresji genów osi podwzgórzowo-przysadkowej (GnRH, GnRH-R, α, Lhβ, Fshβ). Jednocześnie wykazano wzrost sekrecji LH w sezonie letnim i jej obniżenie w sezonie zimowym. Zwiększenie stężenia CO w krwi odpływającej z zatoki ocznej istotnie wpłynęło również na dobowy profil sekrecji melatoniny. Podsumowując, wyniki badań przeprowadzonych w ramach niniejszej pracy wskazują, że tlenek węgla wytwarzany pod wpływem światła w oku dociera drogą przeciwprądowego przenikania w obszarze splotu okołoprzysadkowego z naczyń żylnych do tętniczych zaopatrujących bezpośrednio mózg i wpływa na ekspresję genów osi podwzgórzowo-przysadkowej krzyżówki świni domowej i dzika a w konsekwencji na sekrecję hormonów regulujących procesy rozrodcze.Pozycja Zaburzenia rytmów biologicznych pod wpływem zanieczyszczenia światłem - wybrane fizjologiczne aspekty niedoboru melatoniny oraz witaminy D(Uniwersytet Rzeszowski: Południowo-Wschodni Oddział Polskiego Towarzystwa Inżynierii Ekologicznej z siedzibą w Rzeszowie, 2017) Jurkowlaniec, EdytaWzrost czasu ekspozycji na sztuczne oświetlenie wpływa na przebieg procesów fizjologicznych u zwierząt i ludzi. Zmiana rytmów fizjologicznych jest głównie następstwem nieprawidłowego funkcjonowania głównego zegara, zlokalizowanego u człowieka w jądrze nadskrzyżowaniowym przedniego podwzgórza, a w konsekwencji - zmniejszenia ilości wytwarzanej w szyszynce melatoniny, wydzielanej do krwiobiegu wyłącznie w ciemności. Hormon ten reguluje szereg funkcji organizmu, a jego niedobór w warunkach zwiększonej ekspozycji na światło wiązany jest m.in. z różnymi postaciami nowotworów, w tym nowotworów piersi. Antykancerogenne działanie melatoniny wynika z jej właściwości antyoksydacyjnych, immunomodulacyjnych i antyestrogenowych. Obniżenie poziomu melatoniny zaburza również prawidłowy rytm snu i czuwania, spłycając sen i zwiększając ryzyko depresji. Zwiększona ekspozycja na sztuczne światło, z ograniczeniem czasu przebywania w warunkach naturalnego, słonecznego oświetlenia wywołuje również deficyt kalcytriolu - witaminy D, której początkowy etap syntezy zachodzi w skórze pod wpływem promieniowania UV. Niedobór witaminy D może prowadzić do chorób sercowo-naczyniowych i miażdżycy, wzrostu insulinooporności i cukrzycy oraz otyłości. W artykule zostaną przedstawione wybrane aspekty mechanizmów fizjologicznych, prowadzących do powstania powyższych zaburzeń.Pozycja Zaburzenia snu związane z nadmierną ekspozycją na światło(Uniwersytet Rzeszowski: Południowo-Wschodni Oddział Polskiego Towarzystwa Inżynierii Ekologicznej z siedzibą w Rzeszowie, 2017) Orzeł-Gryglewska, JolantaSztuczne światło zakłócające okres nocnego mroku wpływa niekorzystnie na sen. Szczególnie destrukcyjnie działa wieczorne naświetlanie światłem niebieskim. Jedną z przyczyn tych zaburzeń jest blokowanie wydzielania melatoniny, która wspomaga prawidłowy przebieg snu. Niewłaściwe wieczorne oświetlenie pomieszczeń opóźnia zasypianie oraz pojawianie się 2. i 3. stadium snu NREM. Po wieczornym 2-godzinnym naświetlaniu zmniejsza się gęstość mocy fal wolnych w zapisie EEG podczas snu głębokiego. Spanie w oświetlonym pomieszczeniu prowadzi również do spłycenia snu. Regularne opóźnienie pory zasypiania w warunkach niewłaściwego oświetlenia oraz spłycanie snu zmniejsza ilość snu całonocnego i prowadzi do deprywacji snu, której konsekwencje ponosi cały organizm.