Przeglądanie według Temat "PAMAM dendrimer"
Aktualnie wyświetlane 1 - 2 z 2
- Wyniki na stronie
- Opcje sortowania
Pozycja Encapsulation of genistein in glycidylated G3 polyamidoamine dendrimers enables diffusion of genistein through biological membranes and anti-nematode activity of the encapsulate(Publishing Office of the University of Rzeszow, 2024-06) Filipowicz-Rachwał, Aleksandra; Drozdowska, Joanna; Zagórska-Dziok, Martyna; Uram, Łukasz; Wołowiec, StanisławIntroduction and aim. Poorly soluble isoflavonoid genistein is known as an anti-nematode agent and also it decreases the risk of certain types of cancer. The biological activity of genistein is limited mostly by its low solubility. Therefore many attempts to increase genistein solubility in water were reported. We applied a polyamidoamine dendrimer, modified its surface by glycidylation, and used this macromolecule as a guest for genistein. Material and methods. Polyamidoamine dendrimer 3rd generation was substituted with 64 glycidol residues to obtain a macromolecule host for genistein. The stoichiometry of this host-guest complex was determined. The complex was tested for skin model permeability, toxicity on fibroblast (BJ) and keratinocyte (HaCaT) cell lines in vitro and anthelmintic activity on the Caenorhabditis elegans nematode. Results. The partition coefficient of genistein between octanol and water was determined (KO/W). The 1:1 host-guest complex was isolated and used as drug delivery system for genistein delivery. PAMAM G3 glycidyled dendrimer containing genistein indicated an anthelmintic activity at 50 µM concentration. Conclusion. The solubility of genistein in water increases 640 times in presence of an equimolar concentration of the dendrimer. One molecule of host dendrimer encapsulates 3 molecules of genistein. The encapsulate is an efficient anti-nematode formulation.Pozycja Synthesis and characterization of Fulvestrant and Paclitaxel conjugates with polyamidoamine dendrimer fourth generation(Publishing Office of the University of Rzeszow, 2023-09) Wróbel, Konrad; Wołowiec, StanisławIntroduction and aim. Poorly soluble anticancer drugs can be attached covalently into biologically inert macromolecule in order to administrate a drug as water soluble form. It was proven that covalent linkers, for instance amide or carbamate bonds are susceptible to hydrolysis. Thus the attached drug can be released from the conjugates in tissue, specifically within the targeted cell. We aimed at construction of water soluble conjugates of Fulvestrant and Paclitaxel with PAMAM G4 dendrimer. In order to obtain water soluble conjugates the amine groups were substituted with R-glycidol. Material and methods. Polyamidoamine dendrimer of fourth generation was synthesized and examined by detailed NMR analysis in water and in DMSO. The conjugates were covalently linked to amine groups of PAMAM after activation of Fulvestrant 17-OH group with 4-nitrophenylchloroformate and activation of end-carboxyl group of Paclitaxel succinate. Results. The method of binary conjugate PAMAMG4-Fulvestrant-Paclitaxel synthesis was elaborated and the product was characterized by physicochemical methods. Conclusion. The glycidylated PAMAMG4-Fulvestrant-Paclitaxel conjugate is better soluble in water than unconverted drugs.