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Abstract—A method of automatic extracting of temporal pat-
terns from learning data for constructing hierarchical behavioral
patterns based classifiers is considered in the paper. The presented
approach can be used to complete the knowledge provided by
experts or to discover the knowledge automatically if no expert
knowledge is accessible. Formal description of temporal patterns
is provided and an algorithm for automatic patterns extraction
and evaluation is described. A system for packet-based network
traffic anomaly detection is used to illustrate the considered ideas.
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I. INTRODUCTION

Classification refers to the task of predicting a class label
for a given unlabeled object. There are numerous approaches
to constructing classifiers to be found in literature [1], [2],
[3], [4]. A permanent growth of volume of gathered data and
complexity of analyzed concepts necessitates new methods of
data mining, process mining and classifiers constructing to
meet the challenge of nowadays applications. As an example
of such a challenge the telecommunication network traffic
anomaly detection problem can be considered. The growing
number of IP networks threats and the growing volume of
transmitted data require new methods of network traffic data
analysis. Nowadays, network anomaly detection is a very broad
and heavily explored subject but the problem of finding a
generic method for a wide range of network anomalies is still
unsolved.

The most popular approaches are signature-based [5]. Sig-
natures describe illegal patterns in network traffic and require
expert knowledge about the given network threat given a priori.
Such solutions do not cope with slightly modified or so-called
0-days attacks [6]. Another group of anomaly detection meth-
ods is based on entropy analysis [7], [8], [9]. These methods
focus on analysis of traffic features distributions. Especially,
parametrized entropy-based approaches (Tsallis entropy, Renyi
etropy) have been a hot research recently. It is worth to mention
that formal methods e.g. Petri nets have been successfully
adapted for identification of cyber threats. For example colored
Petri nets were also utilized for detection of DoS attacks in
Wide Area Networks [10]. In this case colored Petri nets were

adapted to model router network connections in the area of the
United States. Another approach based on colored Petri nets
and ontology can be found in [11] and [12]. This approach
uses classifiers in the form of colored Petri nets modules and
is able to cope with 0-days attacks.

The approach considered in this paper is based on hierar-
chical behavioral patterns based classifiers initially described
in [13]. The decision provided by such a classifier is based on
a presence and/or absence of some temporal patterns in the
considered data. The temporal patterns describe legitimate or
illegitimate network traffic and has been successfully used to
recognize selected network attacks [13]. The temporal patterns
used in the previous approach have been defined by experts.
In this paper we presents preliminary results of the method of
extraction of temporal patterns automatically.

The paper is organized as follows. Section II presents an
overview of the considered approach to classifiers construction.
Syntax and semantics of temporal patterns are described in
Section III. Temporal patterns extraction method is presented
in section IV. A short summary is given in the final section.

II. HIERARCHICAL BEHAVIORAL PATTERNS BASED
CLASSIFIERS – OVERVIEW

Hierarchical behavioral patterns based classifiers (HBPB
classifiers for short) have been proposed in [13]. They con-
stitute a new approach for constructing classifiers from huge
volume of temporal data. The novelty of the introduced method
lies in a multi-stage approach to constructing hierarchical
classifiers that combines process mining, feature extraction
based on temporal patterns and constructing classifiers based
on a decision tree.

The general scheme of constructing of HBPB classifiers is
given in Fig. 1. Let A = {a1, . . . , ak} denote a set of attributes
selected to describe important features of the system under
consideration. The learning data used to construct a classifier
take the form of tuples with values of these attributes in a
sequence of time points t1, t2, . . . . The learning data are stored
in a table and each row of the table can be treated as an object.
These objects (called here time points) are grouped with a
metric that describes the similarity (distance) between time
points. We use the well-known in literature k-means method978-1-4799-8322-3/15/$31.00 c© 2015 IEEE
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Fig. 1. Scheme of constructing of hierarchical classifiers

of clustering. The result of clustering are data with additional
column of membership to clusters.

These data are considered from two points of view. In the
first stage the whole data are used to construct the so-called
state graph. Groups of time points (clusters) obtained from
clustering process are represented as nodes in the state graph.
If two consecutive time points belong to two different groups
an arc is included into the graph that connects corresponding
nodes. Multiple arcs going from node ci to cj are represented
by a single arc. This stage allows us to cope with huge
amount of time points and makes the approach scalable. In the
consecutive stages, we use the clustered learning data sliced
into pieces called time windows.

Temporal patterns take the form of LTL logic formu-
las [14], [15] (see Sec. III for more details). They represent
some temporal dependencies between nodes of the state graph.
The temporal patterns can be defined by experts using the
generated state graph or can be extracted from the learning
data automatically. The paper focuses on the latter approach e.i.
extracting temporal patterns using the time windows generated

from learning data.

Let Φ = {ϕ1, . . . , ϕm} denote the set of temporal patterns.
They are treated as input attributes for the classification
problem. For a given time window a path is generated and for
each behavior pattern it is checked whether the corresponding
LTL formula holds for the path or not. Thus for a given path
a sequence of m Boolean values is evaluated. Due to the fact
that for learning data the values of the decision attribute are
known, we use this information to create values of the decision
attribute for each time window. Each time window provides
a row for high level learning data described by conditional
attributes ϕ1, . . . , ϕm and the decision attribute d. Finally, we
remove duplicate rows from the high level data, to ensure
scalability of our approach. The result are the reduced data,
which are used to build the classifier based on a decision
tree [13].

III. TEMPORAL PATTERNS

The decision provided by a HBPB classifier is based on
a presence and/or absence of some temporal patterns in the



considered time window. The Linear-time Temporal Logic
(LTL) [14], [15] is used to describe the temporal patters. The
logic provides modalities referring to time. Aside from the
propositional logic operators, the temporal operators are: G
(globally), F (finally), X (next), U (until).

Anomaly detection with an HBPB classifier is based on the
analysis of sequences of clusters. Linear-time temporal logic
seems to be the most convenient form of temporal patterns
encoding. The four temporal operators are sufficient to describe
presence or absence of some clusters in the analysed sequence,
order of clusters etc. In addition to this, in case of finite
sequences of clusters, it is easy to implement algorithms that
check satisfiability of such formulas.

Let C = {c1, . . . , cn} denote the set of clusters i.e. nodes in
the state graph. Let T denote the set of all temporal patterns.
Temporal patterns are LTL formulae over the set C formed
according to the following grammar.

true, false ∈ T (1a)
∀ci∈C ci ∈ T (1b)
if ϕ,ψ ∈ T then (ϕ), ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ,
ϕ⇒ ψ, ϕ⇔ ψ, Xϕ, Gϕ, Fϕ, ϕUψ ∈ T (1c)

The precedence order on operators is as follows: ¬; X,G,F;
∧; ∨; ⇔; ⇒; U . Parenthesis can be used to change order of
a formula evaluation.

It should be emphasized that the length of any time window
is finite. For a sequence of clusters π = c1 . . . ck, π[i]
will denote the i-th element, π[i . . . ] will denote the suffix
of π starting from the i-th element and π will denote the
length of the sequence. Temporal patterns stand for properties
of sequences of clusters. Any sequence can either satisfy a
temporal pattern or not. Any sequence of clusters satisfies the
formula true , and none satisfies false . Let ϕ,ψ ∈ T and
ci ∈ C. The satisfaction relation is defined as follows:

• π |= ci iff π[1] = ci

• π |= ¬ϕ iff π 6|= ϕ

• π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

• π |= ϕ ∨ ψ iff π |= ϕ or π |= ψ

• π |= ϕ⇒ ψ iff π 6|= ϕ or π |= ψ

• π |= ϕ⇔ ψ iff π |= ϕ and π |= ψ
or π 6|= ϕ and π 6|= ψ

• π |= Xϕ iff π > 1 and π[2 . . . ] |= ϕ

• π |= Gϕ iff ∀
i∈1...π π[i . . . ] |= ϕ

• π |= Fϕ iff ∃
i∈1...π π[i . . . ] |= ϕ

• π |= ϕUψ iff ∃
i∈1...π π[i . . . ] |= ψ and π[j . . . ] |=

ϕ for all 0 ≤ j < i

It should be underlined that due to the clustering algorithm
for any sequence π the following property holds:

∀
i∈1...π−1π[i] 6= π[i+ 1] (2)

1: T ′ ← [ ] . [ ] – empty list
2: L′ ← [ ]
3: for all x ∈ X do
4: for all b ∈ Bind(x) do
5: for all π ∈ S do
6: if π |= ϕ(x, b) then
7: if ϕ(x, b) /∈ T then
8: T ′ ← T ′ + [ϕ(x, b)] . list concatenation
9: L′ ← L′ + [1]

10: else
11: L′[ϕ(x, b)]← L′[ϕ(x, b)] + 1
12: end if
13: end if
14: end for
15: end for
16: end for

Fig. 2. Temporal patterns extracting algorithm – searching for patterns

If a time window with length k is used then for any
sequence π, 1 ≤ π ≤ k. This influence the interpretation of
LTL formulas. Let us consider a few examples of temporal
patterns with a single temporal operator. Let a sequence of
clusters π be given:

• π |= Fci iff π contains cluster ci;

• π |= F(ci∨cj∨ck) – iff π contains at least one cluster
from the formula;

• π |= Gci iff π = 1 and π[1] = ci.

• π |= G(ci∨cj∨ck) – iff π contains only clusters from
the formula;

• π |= Xci iff π[2] = ci;

• π |= ci U cj iff π[1] = cj or π[1] = ci and π[2] = cj .

IV. TEMPORAL PATTERNS EXTRACTION

The multi-stage approach to construction HBPB classifiers
has been chosen to deal with a huge volume of learning data.
Examples of such data include medical and financial data,
data from vehicles monitoring, or data from telecommunication
networks, e.g. information about packages flow. The clustering
stage reduces the volume of data significantly. On the other
hand, this stage provides some difficulties with defining tem-
poral patterns that constitute the high level attributes for the
construction of classifiers.

It seems that the simplest way to extract the patters is
the analysis of the states graph by experts and expressing
their knowledge in the form of suitable LTL logic formulas.
The value of patterns defined by experts is undisputed, but in
practice it hardly possible to define a suitable set of patterns
at once. The preliminary set of features is usually updated
many times to provide an acceptable level the classifier quality.
To reduced the process of features extraction, we propose an
automatic method that searches the set S of sequences of
clusters generated for learning data and provides some rating
of temporal patterns satisfied by the sequences.

The set T of all possible temporal patterns is infinite,
thus it is not possible to check all of them. The temporal
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patterns extracting algorithm starts with a set X of temporal
patterns templates (see Fig. 2). A temporal pattern template is
an LTL formula defined by (1), but containing some variables
v1, . . . , vm instead of names of clusters. For a given template
x ∈ X , let Var(x) denote the set of variables that occur in
x. A binding of a template x is a substitution b that replaces
each variable of Var(x) with a cluster c ∈ C. The set of all
possible bindings of x will be denoted by Bind(x). If x ∈ X
and b ∈ Bind(x), then ϕ(x, b) denotes the temporal pattern
that is the result of replacing x variables with clusters’ names
defined by b.

The extraction algorithm presented in Fig. 2 for a given
set X of temporal pattern templates checks for each formula
ϕ(x, b) how many times the formula is satisfied by the se-
quences from set S. The result is the list of temporal patterns
that are satisfied by at least one sequence. We print the list
ordered by values of list L′ for convenience.

As a proof of concept for the approach considered in the
paper a system for packet-based network traffic anomaly de-
tection is used [13]. For the purpose of this work, a part of the
university network was selected to capture data for analysis.
The network topology is given in Fig. 3. The experiment
environment consists of 22 work stations with Windows 7
operating system, Active Directory server, a watchdog com-
puter (Windows 7) and auxiliary server with Windows Server
2008 R2 operating system. The NAT router has been used to
separate the network from the whole university network and to
provide an access to the Internet. The router is equipped with a
mirror port used to send copies of all packets to the watchdog
computer. The auxiliary server provides FTP (port 21), RDP
(port 3389) and MySQL (port 3306) services. The Wireshark
1.10.7 software was used to monitor the network traffic. It
provides the possibility of real time observing of sending and
receiving packets for the given interface and to backup them to
pcapng files. The typical network traffic generated by students
lessons was captured as the legitimate traffic. Further to that,
each day we generated four different network traffic anomalies
including network scan, IP-spoofed scanning and brute force.
It should be underlined that we used the network topology

TABLE I. DATA ATTRIBUTES

Attribute name Description
id packet identifier
srcIP source IP
srcPort source port
destIP destination IP
destPort destination port
protocol protocol
length packet length (bytes)
time packet transmission time
relTime time from starting monitoring
info short information about packet (from Wireshark)
srcMAC source MAC address
dstMAC destination MAC address
deltaTime time difference between current and previous packet
ipFlags IP flags
ttl packet Time To Live
tcpFlags TCP flags
icmpType type of ICMP traffic
udpLength UDP packet length

TABLE II. RELATIONSHIP BETWEEN CLUSTERS AND TYPES OF
NETWORK ATTACKS

Clusters Types of network attacks
c1 0 1 2 3 4
c4 0 1 2 3
c7 0 1 2 3 4
c8 0 1 2 3 4
c10 0 4
c14 0 2 4
c16 0 1 2 3 4
c17 0 4

shown in Fig. 3, so IP-spoofed scanning was possible. The
result of network traffic capturing was three 24-hours data sets
in the form of pcapng files. Captured data were converted into
csv files. Received time points were described with attributes
presented in Table I. Finally, we received the state graph with
20 clusters. For more details on clustering method see [13].

Most of the clusters concern the legitimate traffic only.
Thus, sequences that contain only such clusters do not point
out any network attack. There are eight clusters that may point
out some anomalies. They are shown in Table II, where 0
denotes the legitimate traffic.

The set S of sequences of clusters generated from learning
data contains 6456 different elements. Based on the states
graph we have chosen the following temporal patterns tem-
plates:

Fv1
Gv1
F(v1 ∧ Xv2)

The templates describe temporal patterns that may point out
the presence of some clusters in the considered sequence or
point out a move from one cluster to another.

It follows that there are 800 temporal formulas to check.
704 of them hold for at least one sequence and only these
sequences are considered in the following stages. Next, we
remove from the set of temporal patterns these ones that
concern cluster denoting legitimate traffic only. In other words,
only temporal patters with at least one cluster from Table II
may be useful for the classification process. In the considered
example, 467 temporal patterns fulfill this requirement.

The set of 467 temporal formulas can be used by experts to
select best temporal patterns according to their knowledge. The



TABLE III. RESULTS OF TEMPORAL PATTERNS EXTRACTION

Temporal pattern Number of seq. Temporal pattern Number of seq.
Fc1 419 F(c8 ∧ Xc10) 53
Fc4 4005 F(c8 ∧ Xc16) 13
Fc7 4672 F(c8 ∧ Xc17) 23
Fc8 1035 F(c10 ∧ Xc1) 32
Fc10 1908 F(c10 ∧ Xc4) 132
Fc14 927 F(c10 ∧ Xc7) 515
Fc16 1665 F(c10 ∧ Xc8) 138
Fc17 1094 F(c10 ∧ Xc14) 54
Gc7 4 F(c10 ∧ Xc16) 61
F(c1 ∧ Xc4) 28 F(c10 ∧ Xc17) 99
F(c1 ∧ Xc7) 221 F(c14 ∧ Xc4) 25
F(c1 ∧ Xc8) 82 F(c14 ∧ Xc7) 284
F(c1 ∧ Xc10) 8 F(c14 ∧ Xc8) 116
F(c4 ∧ Xc1) 32 F(c14 ∧ Xc10) 52
F(c4 ∧ Xc7) 350 F(c14 ∧ Xc17) 147
F(c4 ∧ Xc8) 34 F(c16 ∧ Xc1) 58
F(c4 ∧ Xc10) 107 F(c16 ∧ Xc4) 211
F(c4 ∧ Xc14) 13 F(c16 ∧ Xc7) 618
F(c4 ∧ Xc16) 265 F(c16 ∧ Xc8) 101
F(c4 ∧ Xc17) 38 F(c16 ∧ Xc10) 86
F(c7 ∧ Xc1) 112 F(c16 ∧ Xc14) 19
F(c7 ∧ Xc4) 785 F(c16 ∧ Xc17) 72
F(c7 ∧ Xc8) 292 F(c17 ∧ Xc1) 12
F(c7 ∧ Xc10) 747 F(c17 ∧ Xc4) 57
F(c7 ∧ Xc14) 321 F(c17 ∧ Xc7) 336
F(c7 ∧ Xc16) 348 F(c17 ∧ Xc8) 36
F(c7 ∧ Xc17) 345 F(c17 ∧ Xc10) 147
F(c8 ∧ Xc1) 45 F(c17 ∧ Xc14) 126
F(c8 ∧ Xc4) 72 F(c8 ∧ Xc7) 278

process of selecting temporal patterns from a set of predefined
ones is significantly simpler than constructing such formulas
from scratch. Moreover, an expert has a possibility to modify
the formulas e.g. joining similar formulas into one.

In the automatic approach, to reduce further the size of
the set of temporal patterns, we decided to keep only these
temporal patterns that concern only clusters from Table II.
Then any two temporal patterns were checked whether the
same sequences of clusters satisfy both of them. In case of
conformity rate more than 95%, only one of such formulas
was chosen. The final set of 58 temporal patterns used for the
classifier construction is shown in Table III.

To evaluate our classifier we use a well-known in literature
train&test method and samples of data (25530 records as learn-
ing sample and 20097 records as test sample). The classifier
we use is based on the so-called decision tree of the local
discretization (see, e.g., [16], [17], [18]). It is a binary tree,
created by multiple binary partitions (cuts) of the set of objects
into two groups with the value of a selected attribute. We
made three experiments using three measures of cut quality:
pair indiscernibility, entropy and Gini index. Results for all
measures are similar. The overall accuracy is 79,7%, while
the accuracy of recognizing the legitimate traffic is 92,6%. In
spite of the acceptable accuracy of anomaly traffic detection,
the considered set of temporal patterns failed to distinguish one
type of attack from another. This aspect needs further research
and experiments with more elaborated temporal patterns.

V. CONCLUSION

Hierarchical classifiers considered in the paper combine
process mining, extraction of attributes on the basis of temporal
patterns and constructing classifiers based on decision trees
methods. The paper focuses on the extraction of attributes
stage. Some results on automatic extraction of temporal pat-
terns used as input attributes for HBPB classifiers have been

presented in the paper. The temporal patterns take form of
LTL logic formula and describe some temporal properties of
the system under consideration. To illustrate the presented
approach a system for network traffic anomaly detection has
been constructed. Preliminary results presented in the paper
confirm usability of the method.
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