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Anisotropy of the Conductivity

in the Asymmetric Quantum Wells

K. Majchrowski∗ and W. Paśko
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Gorbatsevich et al. and Kibis suggested that a number of interesting

galvano-magnetic effects could be observed in quantum structures where

the symmetry with respect to the space coordinates inversion and time-

-reversal are broken simultaneously. In the paper of Kibis for example, the

infinite triangular quantum well in an external magnetic field was considered

and the anisotropy of electron momentum transfer due to interaction with

phonons was predicted. The role of magnetic field was to provide the time-

-invariance breaking. In this work we considered the effect of anisotropy

of electron momentum transfer due to interaction with polarized light using

more realistic model of finite triangular quantum well. This anisotropy leads

to the anisotropy of the real part of photoconductivity and as it follows from

our calculations, the effect though not very great, could be measurable for

the attainable values of magnetic field B ≈ 5 T and the widths of quantum

well.

PACS numbers: 72.40.+w, 73.21.Fg

1. Introduction

In Ref. [1] it was suggested that a number of new interesting effects could be
observed in quantum structures where the symmetry with respect to the space co-
ordinates inversion and time-reversal are broken simultaneously. As an example of
such structure, in Ref. [1] the asymmetric double-quantum well (QW) in an exter-
nal magnetic field is considered. In this model, the space asymmetry is introduced
by the δ-barriers of different heights, while external magnetic field provides time-
-invariance breaking. Further on, in Ref. [2] the anisotropy of mometum transfer
which occurs in the infinite triangular quantum well in an external magnetic field
was considered. The models discussed in Refs. [1, 2], despite their remarkable
insights are to be amended however, since the model of δ-barriers, as wells as the
infinite triangular quantum well do not seem to be very realistic. Therefore, the
aim of the paper is to consider the anisotropy of momentum transfer and photo-
conductivity which can occur under light absorption in finite triangular QW in an
external magnetic field.
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2. Finite triangular quantum well in an external magnetic field
To treat the two-dimensional electron gas in an external magnetic field,

we start with the conventional approach based on effective mass equation of the
form [3]:[

Ec +
(i~∇+ eA)2

2m∗ + U(z)

]
ψ(r) = Eψ(r), (1)

where Ec is the bottom of the semiconductor conduction band, A — vector poten-
tial, e and m∗ are the electron charge and effective mass, respectively. We choose
the gauge A = (Bz, 0, 0) and assume the potential U(z) to be

U(z) =

{
U0, z < 0,

eEz, 0 < z ≤ d, |eEd| = U0

(2)

and suppose that the electron wave function is

φk(x) = Cϕ(kx, z) exp(ikx + iky), (3)
where C is the normalizing constant. Then, by means of Eqs. (1)–(3), one can
arrive at the next ordinary differential equation for the ϕ(kx, z)-function

− ~2

2m∗
d2ϕ(kx, z)

dz2
+

[
~2

2m∗ +
~eBkxz

m∗ +
(eBz)2

2m∗ + eEz − ε

]
ϕ(kx, z) = 0, (4)

where ε = Ec + ε(kx)− ~2k2
y

2m∗ .
Considering the infinite triangular QW and using the analytical solutions of

corresponding Schrödinger equation, the author of Ref. [2] came to the conclusion
that the electron energy spectrum is anisotropic with respect to transverse motion,
that is ε(vx) 6= ε(−vx). According to [2], the physical reason for that is this: as
an electron travels at the velocity vx, the Lorentz force which is due to in-plane
magnetic field, acts on it in the direction 〈−x〉, with the result that the maximum
of the electron wave function is shifted in the direction 〈−z〉. If the electron
velocity changes to −vx, the Lorentz force reverses direction and the maximum
of the electron wave function shifts to the direction 〈z〉. Hence in asymmetric
potential U(z) 6= U(−z) the electron energy ε(vx) 6= ε(−vx). This claim is correct
in principle and in case of finite triangular QW the physical explanation of such
asymmetry is similar. From (4) it immediately follows that the energy spectrum
of electrons in QW depends on the direction of electron movement along x-axis.
Indeed, since the electrons moving along x-axis in opposite directions are shifted
by the Lorentz force in opposite directions with respect to z-axis, they behave as
if they were in QWs of different effective depth, and hence, ε(+kx) 6= ε(−kx).

Having in mind of what was said above concerning ε(+kx) 6= ε(−kx), to
make the next step it is convenient to consider two equations of the form

d2ϕ(ζ)
dζ2

= (ζ − ε̃1)ϕ(ζ),
d2ϕ(ζ)

dζ2
= (ζ − ε̃2)ϕ(ζ), (5)

where ζ, ε̃1 and ε̃2 are dimensionless quantities which are equal: ζ = z/z01

for the first of Eqs. (5) and ζ = z/z02 for the second one; z01 =
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[
~2/2m∗(eE + eB~kx/m∗)

]1/3
, z02 =

[
~2/2m∗(eE − eB~kx/m∗)

]1/3 ; ε̃1 =
ε/ε01, ε̃2 = ε/ε02 while

ε01 =
{
[(eE + eB~kxm∗−1)~]2/2m∗}1/3

,

ε02 =
{
[(eE − eB~kxm∗−1)~]2/2m∗}1/3

.

The numerical solutions to Eqs. (5) for +kx, −kx and the boundary condi-
tions ψ(0) = 0, ψ(d) = 0 are shown in Table. In the table, ε1, ε2, ε3, . . . stand for
the energy eigenvalues of finite triangular QW.

Here we also compare the results of numerical calculations with the energy
eigenvalues obtained by means of formulae for infinite triangular QW. It is seen
that in general, there is an essential difference in energy eigenvalues for these two
cases.In Fig. 1 an electron energy in the ground state of finite triangular QW is

TABLE

The numerical solutions to Eqs. (5) and the boundary conditions.

U0 −→∞ d = 15 nm U0 −→∞ d = 20 nm

E = 2.12× 107 V/m U0 = 0.318 eV E = 1.59× 107 V/m U0 = 0.318 eV

εn [eV] εn [eV] εn [eV] εn [eV]

B = 0.5 T

n = 0 0.14155120 0.09429694 0.11910669 0.07787549

n = 1 0.23969517 0.16500947 0.20021054 0.13608414

n = 2 0.31966484 0.22293948 0.26629558 0.18390778

B = 3 T

n = 0 0.14364455 0.09429699 0.12140644 0.07787529

n = 1 0.24337781 0.16500925 0.20425628 0.13608410

n = 2 0.32464247 0.22293979 0.27176399 0.18390776

Fig. 1. Electron energy in the ground state of finite triangular QW and its second

derivative versus |kx|.
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plotted versus |kx|; it is clearly seen that indeed, starting from some definite values
of |kx|, ε(+kx) 6= ε(−kx). In the same picture the second derivatives of energy
ε(±kx) with respect to kx are also shown; let us notice that they are represented
by straight lines up to the kx = kF, where kF is the Fermi wave vector.

3. Anisotropy of the photoconductivity

The anisotropy of energy ε(+kx) 6= ε(−kx) suggests that the anisotropy of
momentum transfer could occur under light absorption within this QW in an ex-
ternal magnetic field. Indeed, let us suppose that the light linearly polarized along
x-axis with the wave vector kph = (0, 0, kz,ph) is incident on the semiconductor
structure which makes a finite triangular QW (Fig. 2). That the second derivatives

Fig. 2. Schematic representation of the structure containing triangular QW and the

optical transitions.

of ε(±kx) with respect to electron wave vector kx are the straight lines within the
wide range of changes of kx, enables to characterize an electron movement along
x-axis, as we shall see later, by means of “renormalized” effective masses which are
different for 〈−x〉 and 〈+x〉. Then despite the fact that absorbed photons deliver
to the electrons with +kx and −kx the same momentum, the electron momenta
corresponding to 〈−x〉 and 〈+x〉 are different, because the “renormalized” effective
masses corresponding to +kx and −kx are different.

Defining in our case the effective masses as

m̃∗
n(±kx) =

~2

me

εn(±kx)
dk2

and calculating them numerically, we can see that m̃∗
n(+kx) 6= m̃∗

n(−kx). We
term this effective masses “renormalized” and denote them by tilde, because they
depend on magnetic field B as well as an electric field E.

We now proceed to the analysis of anisotropy of photoconductivity, induced
by the polarized light beam incident on the structure in question, as it is shown
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in Fig. 2. Here two scenarios are possible. The first one corresponds to optical
inter-subband transitions between the states of two triangular QWs, one for the
electrons in conduction band and another one for the holes in valence band. The
second corresponds to optical transitions between valence band and the states of
electrons in triangular QW in the conduction band (see Fig. 2). This situation
occurs for instance, for the doped n-AlGaAs/GaAs heterojunction.

Using the standard approach (see, for instance [4]), one gets the general
expression for the real part of the photoconductivity which we denote by σ:

σ =
πe2

m2
eω

2
Ω

∑

i,j

|〈|j|e · p̂|i〉|2 [f(Ei)− f(Ej)] δ (Ej − Ei − ~ω) ,

where, since the electromagnetic wave is polarized along z, e = (0, 0, 1) and e · p̂ =
−i~∂/∂z. The factor of 2 in front of the summation is for spin, f(Ei), f(Ej) are
the corresponding Fermi factors and Ω stands for the volume of the system. Then
doing exactly in the same way as in Ref. [4], after some manipulations which
include the summation of Dirac-comb, one gets the next expression for the inter-
-subband transitions in triangular QWs

σ± =
πe2

m2
edω

∑
n,m

|e · pcn,vm|2|〈cn|vm〉|2
(
mem̃

∗(±)
cn,vm/π~2

)

×Θ [~ω − (Eg + εcn − εvm)] . (6)
Here

e · pcn,vm〈cn|vm〉 ≡ e · pcn,vm

∫
ϕ∗cn(z)ϕvmdz ≈ 〈cnk|e · p̂|vmk〉,

where “c” and “v” indicate the conduction and valence bands, n and m label the
bound states within the QWs and k stands for the transverse wave vector, while
the matrix element e · pcn,vm depends on the nature of the Bloch functions and
on the polarization e; Θ(. . .) is the step function and the ±-superscripts of σ and
m̃∗

cn,vm correspond to +kx and −kx, respectively. The main difference between
formula (6) and the analogous standard formula from, for example Ref. [4], is that
here instead of reduced effective mass m∗

cv, we have m̃∗±
cn,vm, which are defined as

follows:(
m̃∗+

cn,vm

)−1 =
(
m̃∗+

cn

)−1 +
(
m̃∗+

vm

)−1
,

(
m̃∗−

cn,vm

)−1 =
(
m̃∗−

cn

)−1 +
(
m̃∗−

vm

)−1
,

for the first scenario and(
m̃∗+

cn,vm

)−1 =
(
m̃∗+

cn

)−1 + (m∗
h)−1

,
(
m̃∗−

cn,vm

)−1 =
(
m̃∗−

cn

)−1 + (m∗
h)−1

,

for the second one. Here m̃±
cn and m̃±

vm are the renormalized effective masses of
charge carriers in the QWs of conduction and valence band, respectively, while m∗

h

is the standard hole effective mass.
The results of our calculations corresponding to the first scenario are pre-

sented in Fig. 3 as the ∆σ(B)/σ(0)-curves plotted versus B for different d, that is
the different effective QW-widths.
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Fig. 3. ∆σ/σ(0) versus magnetic field for different QW widths.

Here ∆σ = σ+−σ− and σ(0) is the usual photoconductivity at zero magnetic
field. The results for optical transitions between valence band and the states of
electrons in triangular QW in the conduction band are very similar to these ones.
It is clearly seen from Fig. 3 that the anisotropy of the photoconductivity should
occur in the finite triangular QW in an external magnetic field and could be
observable. Indeed, in the magnetic field of about 5 T the ∆σ/σ(0)-ratio, that is
the relative measure of the effect, is about 0.016 which is quite measurable value.

4. Conclusion

The results of our study can be summarized as follows. We considered the
anisotropy of momentum transfer in finite triangular QW in an external magnetic
field which occurs due to interaction with polarized light. We prove, by numerical
solution of the Schrödinger equation, that the electron energy εn(+kx) 6= εn(−kx)
and that the effect mentioned above really exists. This one leads to the anisotropy
of the real part of photoconductivity σ(+kx) 6= σ(−kx) and the effect, though not
very great, could be observable as it seems, for the attainable values of magnetic
field B ≈ 5 T and the widths of QW, because as it follows from our calculations,
the ∆σ/σ(0)-ratio, that is the relative measure of the effect, is about 0.016, which
is quite measurable value.
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