Review of the development of copper oxides with titanium dioxide thin-film solar cells

Cite as: AIP Advances **10**, 010701 (2020); https://doi.org/10.1063/1.5125433 Submitted: 23 August 2019 . Accepted: 03 December 2019 . Published Online: 16 January 2020

Paulina Sawicka-Chudy ⁽¹⁾, Maciej _{Sibiński} ⁽¹⁾, _{Elżbieta} Rybak-Wilusz ⁽¹⁾, Marian Cholewa ⁽¹⁾, Grzegorz Wisz ⁽¹⁾, and Rostyslav Yavorskyi ⁽¹⁾

NEW

Co-Published by

AIP

A new interdisciplinary home for impactful quantum science research and reviews

AIP Advances 10, 010701 (2020); https://doi.org/10.1063/1.5125433 © 2020 Author(s). **10**, 010701

Review of the development of copper oxides with titanium dioxide thin-film solar cells

Cite as: AIP Advances 10, 010701 (2020); doi: 10.1063/1.5125433 Submitted: 23 August 2019 • Accepted: 3 December 2019 • Published Online: 16 January 2020

Paulina Sawicka-Chudy,^{1,a)} D Maciej Sibiński,² Elżbieta Rybak-Wilusz,³ Marian Cholewa,¹ Crzegorz Wisz,¹ and Rostyslav Yavorskyi⁴

AFFILIATIONS

¹Institute of Physics, College of Natural Science, University of Rzeszow, 1 Pigonia Street, 35-317 Rzeszow, Poland

²Department of Semiconductor and Optoelectronics Devices, Lodz University of Technology, Wólczańska 211/215, 90-924 Lodz, Poland

³Department of Heat Engineering and Air Conditioning, Faculty of Civil and Environmental Engineering and Architecture, Rzeszow University of Technology, 12 Powstańców Warszawy Street, 35-959 Rzeszow, Poland

Vasyl Stefanyk Precarpathian National University, T. Shevchenko, 57, 76-018 Iwano Frankiwsk, Ukraine

^{a)}Author to whom correspondence should be addressed: psawicka@ur.edu.pl

ABSTRACT

Copper oxide-titanium dioxide (TiO₂) p–n junctions are promising materials for photovoltaic devices and may reduce production costs due to their low cost and inexpensive production methods compared with silicon solar cells. The present review compares solar cells made with copper oxides combined with TiO₂–TiO₂/Cu₂O and TiO₂/CuO heterojunctions, and "cascade heterojunction systems." First, we describe the main properties of titanium (IV) dioxide (TiO₂), cuprous oxide (Cu₂O), and cupric oxide (CuO), and their potential applications. Next, we explain the concept of copper oxide and TiO₂ heterojunctions. We summarize and present the photovoltaic characteristics (efficiency, fill factor, circuit current density, and open circuit voltage), thickness, preparation method, and electrode type for solar cells comprising copper oxide and TiO₂. The efficiency of the solar cells ranged from 0.0005% to 1.62%. The thickness of the TiO₂ and cupric oxide layers ranged from 0.06 to 16 μ m, and from 0.18 to 1.5 μ m, respectively, depending on the fabrication method. Additionally, we review and discuss the available combinations of copper oxide with other materials (Cu₂O with ZnO, CuO with ZnO, and CuO with Si), as well as the effect of the thickness of the copper (I) oxide and copper (II) oxide on the solar cell performance. Finally, we present aspects to improve the conversion efficiency of heterojunction solar cells with copper oxides combined with TiO₂. This review will be useful for the construction and further development of thin-film solar cells.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5125433

I. INTRODUCTION

Solar cells are becoming increasingly important in light of foreseeable increases in energy use and limitations of natural fossil fuel resources.¹ Solar cells were invented in the 19th century, but the first practical photovoltaic (PV) solar cells were developed in 1954, producing a conversion efficiency of ~6%.^{2,3} In 1947, Telkes achieved an efficiency of ~1% using thermoelectric junctions.^{2,4} In 1958, silicon solar cells were first applied to the satellite Vanguard 1,⁵ and in 1976, Carlson and Wronski⁶ fabricated α -Si:H solar cells at the RCA Laboratory with an energy conversion efficiency of 2.4%. Green⁷ recently reported an energy conversion efficiency of 26.7% achieved on Si (crystalline cell) with an area of 79 cm². The manufacture of silicon solar cells, however, requires expensive materials and production processes. Metal oxide (MO) semiconductor(s) have several advantages for PV devices, including nontoxicity, abundance, chemical stability allowing for the material to be deposited under ambient conditions,^{8,9} simple structure, simple fabrication process, low temperature processing, photosensitivity, and potentially lower cost due to the availability of inexpensive materials and production methods.⁹⁻¹² Although MO semiconductors have much lower efficiencies,^{3,13-20} they have become a recent focus of fundamental research.²¹⁻²⁵

Copper oxides combined with TiO_2 are promising materials for optoelectronics, which are potentially useful for inexpensive and competitive solar cell construction.²⁶ Copper is a cheap material, e.g., gold is 6000 times more expensive.²⁷ Furthermore, Cu₂O/TiO₂ heterostructures have the ability to store multiple electrons in thin film(s);²⁸ the theoretical limit of efficiency of a defect-free TiO₂/CuO solar cell is ~20%,²⁹⁻³¹ ~16% with a CuO film thickness of only 1.5 μ m, and 28.6% for a tandem structure of TiO₂/CuO/Cu₂O.³ Metal oxide solar cells, however, may have a large number of defects at the heterojunction interface and are not able to achieve both *n*-type and *p*-type controllable conductivity.³

In our review, we present the state of the art as well as our technological experience with solar cells made with copper oxides combined with TiO_2 and compare their PV characteristics. We have been fabricating TiO_2/Cu_2O and TiO_2/CuO thin-film heterojunction solar cells using direct current (DC) magnetron sputtering,^{29,32} and describe copper and TiO_2 -based solar cells. This review should be useful for the construction and further development of thin-film solar cells.

II. PROPERTIES AND APPLICATIONS OF TITANIUM DIOXIDE AND COPPER OXIDES

A. Properties of titanium dioxide

Understanding the material properties of TiO_2 and copper oxides will help to clarify the mechanisms of heterojunction solar cells based on these metal oxides. Titanium dioxide was discovered in 1795^{33} and has been studied since $1972.^{34}$ It is a key semiconductor used for the development of photocatalysis³⁵ and solar cells. TiO₂ is usually used in dyesensitized solar cells. In a dye, TiO₂ captures photons of visible light radiation at a lower energy than its band gap and tunnels the electrons produced by the light harvester to external contacts.²² Anatase and rutile (tetragonals), and brookite (orthorhombic) are crystalline polymorphs of TiO₂.^{36,37} Rutile is thermodynamically more stable than brookite and anatase. Heating brookite and anatase at a temperature of ~900 °C converts them to rutile.²⁹ Brookite is the least stable of the three polymorphs.³⁸ When the substrate temperature is low during deposition, amorphous TiO₂ is observed.^{38,39} Table I shows details of the parameters of TiO₂.

TiO₂ can function as an indirect gap semiconductor.⁴⁷ The band gap energy of anatase and rutile is greater than 3 eV.^{54,55} Titanium dioxide absorbs a small fraction of the spectral solar irradiance.⁵⁶ At wavelengths shorter than 387 nm (anatase) and 413 nm (rutile), electron-hole pairs are formed by the solar spectrum.^{38,56,57} Titanium dioxide absorbs less than 5% of the solar spectrum and is thus used to reduce the band gap for better absorption of the solar spectrum or as a transparent window-layer.^{3,58} In TiO₂, electrons and holes not consumed upon generation will rapidly undergo recombination [$(3.2 \pm 1.4) \times 10^{-11}$ cm³/s].⁵⁹ TiO₂ is highly stable against mechanical abrasion, chemical attacks, and high temperatures.³⁰ TiO₂ has potential applications for solar energy

TABLE I. Parameters of TiO2.

Parameter	Anatase	Rutile	Brookite	References
Phase	Tetragonal a = 3.785 Å, c = 9.514 Å	Tetragonal a = b = 4.593 Å, c = 2.959 Å	Orthorhombic a = 5.456 Å, b = 9.182 Å, c = 5.143 Å	40
Film density (g/cm ³) Refractive index at 550 nm (reference value)	3.84 2.57	4.25 2.70	4.11 a	31 and 41–43 44 and 45
Resistivity (Ω cm)		~10 ¹³		46
Band gap energy (eV)	3.20	3.0, 3.05	2.96	45 and 47
Electron affinity (eV) Absorption coefficient for ultraviolet photons (1/cm)		$3.9, \sim 4.1, \sim 10^5 - 10^{-10}$	4.2 6	48–50 51–53
Dielectric permittivity (relative) CB (conduction band) effective density of states (1/cm ³) VB (valence band) effective density of states (1/cm ³) Electron mobility (cm ² /Vs) Hole mobility (cm ² /Vs) Shallow uniform donor density (1/cm ³) Shallow uniform acceptor density (1/cm ³) Band to band recombination rate (cm ³ s ⁻¹)		$ \begin{array}{r} 10\\ 2 \times 10^{17}\\ 6 \times 10^{17}\\ 100\\ 25\\ 10^{17}\\ 0\\ 1.3 \times 10^{-7} \end{array} $	-9	30
Valence band edge (eV) Conduction band edge (eV)		-7.1 -3.9		43

^aNo data.

conversion, solar cells (especially as the active component in dyesensitized solar cells, optical sensors, quantum dots, and optical waveguides), photocatalysis, catalysis, environmental purification and separation, water treatment, antibacterial materials, multilayer mirrors, antireflection coatings, dielectric interference filters, and gas-sensing agents, and TiO₂ can be used in artificial heart valves due to its high blood compatibility.^{39,54,60-63} TiO₂ films are also used as buffer layers inserted between copper oxides and transparent conductive oxides, indium tin oxide, and fluorinedoped tin oxide (FTO) layers to mitigate nonideal heterojunctions.^{64,65} Buffer layers improve band-alignment across the heterojunction and reduce the interface defect density and interfacial recombination.⁶⁴

TiO₂ thin films are obtained by various techniques: metalloorganic sol-gels,⁶⁶ atomic layer deposition,⁶⁷ electrophoretic immobilization of TiO₂ powder,⁶⁸ pulsed-laser deposition,^{69–75} reactive radio frequency sputtering,^{76–81} mixing of commercially available nanopowders,⁸² reactive DC sputtering,^{83–86} chemical vapor deposition,^{87,88} ion beam sputtering-cold condensation,⁸⁹ and plasmaenhanced chemical vapor deposition.⁹⁰

B. Properties of cuprous oxide (Cu $_2$ O) and cupric oxide (CuO)

Copper oxides are available in three forms: Cu (I) oxide (Cu₂O, cuprous oxide), Cu (II) oxide (CuO, cupric oxide), and Cu₄O₃.^{43,91} Cu₂O was discovered before germanium and silicon.⁹²

Cu₂O and CuO semiconductors exhibit many interesting characteristics that are useful for solar cells,⁹³ with potential applications for solid state gas sensor heterocontacts, heterogeneous catalysts, and microwave dielectric materials.^{94–100} Semiconductors are also promising materials for photocatalytic¹⁰¹ hydrogen production, especially Cu₂O.^{91,102–105} The potential of Cu₂O for use in solar cells was first recognized in 1920.^{92,105} Table II shows the detailed parameters of copper oxides.

REVIEW

Copper oxides are *p*-type semiconductors¹¹⁸ with band gaps ranging from 1.0 to 2.1 eV for CuO^{113,119-121} and from 2.0 to 2.6 eV for Cu₂O.^{119,107} CuO has a smaller band gap than Cu₂O and therefore absorbs more photons. Copper oxides are low cost and nontoxic, exhibit good electron mobility, but have a fairly high minority carrier diffusion length⁶⁰ as well as poor or inadequate photostability. Additionally, copper (1) oxides possess higher photocatalytic activity than copper (1) oxides for degrading organic compounds.^{91,105,106} Copper oxide films can be obtained by many techniques. Table III shows some properties (band gap type, gap, crystallite size, and nanocrystal shape) of copper oxide samples prepared by different production methods.

The parameters of copper oxides can be controlled. The optical band gap and crystallite size depend on the preparation method. For example, as the thickness of the structure increases, the band gap energy decreases from 2.48 eV to 2.31 eV,¹²² and the grain size increases from 31 nm to 42 nm with an increase in oxygen pressure.¹²⁵ Decreasing the nanocrystal size leads to an increase in the internal surface and interface areas (for equal CuO concentration in

TABLE II. Parameters of the common copper oxides.

CuO	References
pnoclinic, a = 4.6837Å, 3.4226 Å, c = 5.1288 Å	40
1.0, 1.2, 2.1 20), 60, 113, and 114
4.07, 3.23, 3.80	3 and 115
18.10	3
3.0×10^{19}	3
5.5×10^{20}	3
-4.27 to -2.70	82
-5.34 to -4.80	43, 82, and 115
0.1	3
10.0	3
$0.54m_0 - 3.72m_0$	43 and 116
$\begin{array}{c} 0.14m_0 - 0.17m_0 \\ 0.16m_0 - 0.46m_0 \end{array}$	43 and 117
0	3
1×10^{16}	3
$05 \times 10^{-2}, 6.3 \times 10^{-2}$	43
$10^{16} \text{ cm}^{-3}, 4.0 \times 10^{18} \text{ cm}^{-3}$	43
0.98, 0.1	43 and 109
0	5×10^{-2} , 6.3×10^{-2} 0^{16} cm ⁻³ , 4.0×10^{18} cm ⁻³ 0.98, 0.1

^aNo data.

TABLE III. Froperties of copper oxide linits prepared by different method	TABLE III.	Properties of	copper of	xide films	prepared by	different methods
---	------------	---------------	-----------	------------	-------------	-------------------

Preparation method	Optical band gap (eV)	Crystallite size (nm)	Reference
Pyrolysis technique	a	20-170	95
SILAR method	2.31-2.48	7.0-8.0	122
Thermal evaporation	1.50-1.85	27-39	123
Chemical vapor deposition	а	500	124
Pulsed laser deposition	2.52, 2.42, 2.12	31-42	125
Sol-gel	2.1, 1.9	а	126
Magnetron sputtering	1.58	120, 220	29

^aNo data.

 $\rm TiO_2)$ and results in interfacial defects and increasing recombination losses. 127

III. THE SHARED CONCEPT BETWEEN COPPER OXIDES AND TIO2 HETEROJUNCTIONS

A solar cell with combined *p*-type and *n*-type semiconductors is called a blended or bulk-heterojunction solar cell.¹²⁸ TiO₂/CuO or TiO₂/Cu₂O structures are attractive candidates for photocatalytic applications¹²⁹ and PV solar cells. To obtain good efficiency when combining the two semiconductors, it is necessary to obtain high efficiency for each of the individual semiconductor, which are more negative than those of large-gap semiconductor(s).^{130,131} The conduction band edges of Cu₂O and CuO are -1.64 and 0.96 V,^{132,133} respectively. CuO/TiO₂ composites have been tested in processes such as hydrogen production,^{134–139} CO₂ reduction,^{139–142} pollutant degradation,^{139,142,143} and microorganism inactivation.^{139,144,145}

To create heterojunction systems, both semiconductors must possess different energy levels from their corresponding valence and conduction bands,¹⁴⁶ which improves charge carrier separation and increases the lifetime of the charge.^{147,148} The valence (Ev) and conduction (Ec) bands of TiO₂ are lower than those of Cu₂O and CuO.¹⁴⁹ Figure 1 shows the energy level band diagrams of the Cu₂O/TiO₂ and CuO/TiO₂ thin-film heterojunction solar cells.

Conduction band discontinuity (ΔEc) can be calculated using the following equation:^{47,150}

$$\Delta Ec = \sigma_{\rm n} + \sigma_{\rm p} - E_{\rm gCu_2O,CuO} + q \cdot V_{\rm D}, \qquad (1)$$

where σ_n is the activation energy of TiO₂ $\sigma_n = 0.72$ eV, σ_p is the position of the Fermi-level for Cu₂O or CuO above the valence band, $\sigma_p = k \cdot T \ln(N_V/N_A)$, kT = 0.026 eV, N_V is the effective state density in the valence band N_v = 1.9×10^{19} 1/cm³⁴⁷ for *p*-Cu₂O, and N_v = 5.5×10^{203} for *p*-Cu₀O, N_A is the acceptor concentration N_A = 3.5×10^{18} 1/cm³⁴⁷ for *p*-Cu₂O, and N_x = 1×10^{16} 1/cm^{3.3} V_D is the total diffusion potential, q is the electronic charge 1.6×10^{-19} C, qV_D = 0.98,⁴⁷ and E_g is the energy band gap (Cu₂O, E_g = 3.08 eV^{47,151} and CuO, E_g = 1.2 eV).²⁰ The experimental value of Δ Ec for Cu₂O is 0.48 eV, and the theoretical value for Cu₂O is 0.6 eV⁴⁷ and for CuO, 0.68 eV.

Valence band discontinuity (ΔEv) is calculated according to the following relation:⁴⁷

$$\Delta Ev = E_{gTiO_2} - E_{gCu_2O,CuO} - \Delta Ec, \qquad (2)$$

where ΔEv is 1.37 eV for Cu₂O/TiO₂ and 1.32 eV for CuO/TiO₂.

IV. COPPER OXIDE-TITANIUM DIOXIDE STRUCTURES: STATE OF THE ART

In 1999, Song *et al.*¹⁵² first produced different types of copper with TiO₂. Although they considered that copper would improve the photocatalytic activity of TiO₂, they found that using the oxidized form of copper on TiO₂ actually decreased the photocatalytic efficiency.¹⁵² Many researchers have manufactured TiO₂ and copper oxide thin films and studied their photocatalytic efficiency.^{141,153–168} In our review, we paid special attention to TiO₂ and copper oxide heterojunctions for PV devices.

Rokhmat *et al.*¹⁶⁹ developed Cu(NO₃)₂·3H₂O-containing TiO₂ by combined electroplating and spraying methods. PV devices were fabricated by forming cells using polymer electrolyte and aluminum counter electrodes. Additionally, the PV devices were immersed in 0.125M NaOH for 10 min. Next, they illuminated the PV devices with a 500 W halogen lamp for 15 min. Finally, they dried the PV devices at room temperature. Current-voltage (I-V) curves of the PV devices were measured at 120 W/m². The authors prepared solar cells with amounts of Cu(NO₃)₂·3H₂O ranging from 0% to 2 wt. %. The circuit current, open circuit voltage, fill factor (FF), and efficiency were in the range of 0.07–0.068 mA, 0.135–0.5 V,

0.12%-0.24%, and 0.0017%-0.04%, respectively. The highest efficiency was achieved at 1.4 wt. % Cu(NO₃)₂·3H₂O. Additionally, to increase the performance of the PV devices, copper particles were placed between the TiO₂ particles by electroplating, and then the electrolyte was treated with NaOH. The efficiency of these solar cells after electroplating was 0.35%, and it increased to 1.24% after treatment with NaOH.¹⁶⁹

In 2002, Siripala *et al.*¹⁷⁰ prepared Cu₂O/TiO₂ heterojunction structures by electrochemical deposition of Cu₂O on Ti foil. A photoresponse demonstrating efficient light-induced charge carrier separation in TiO₂-copper (I) oxide system(s) was observed. The electrode was illuminated using a Xe lamp spliced at a frequency of 700 W/m². Figure 2 shows photoresponses of the Cu₂O/TiO₂ with a RuO₂ counter electrode and Fig. 3 with a Pt counter electrode. The area of the counter electrodes was 2 cm². The authors concluded that the use of the RuO₂ counter electrodes meaningfully increased the photocurrent. Additionally, they suggested that the TiO₂ films successfully protected the copper (1) oxide layer against photocorrosion without decreasing the efficiency.¹⁶²

Zainun *et al.*¹²⁸ prepared Cu_2O/TiO_2 thin films by squeegee and electrochemical deposition methods. They then fabricated metal electrodes (evaporating indium) on the film to form cells. Figure 4 shows the scheme for the Cu_2O/TiO_2 with the electrodes. The authors characterized the optical and structural properties of the films and measured the photoresponse of the cell. I–V characterization was measured for air mass (AM) 1.5 at 100 mW/cm² and for three samples with various Cu_2O deposition times (5, 10, and 15 min). The authors reported PV characteristics of cells only for the 10-min deposition, which had an efficiency of 0.0005%.¹²⁸ Figure 5 shows the J–V curves for Cu_2O/TiO_2 with various Cu_2O deposition times.

The use of nanotube arrays in Cu_2O/TiO_2 heterojunctions is widely studied.^{171,172} Hou *et al.*¹⁷² prepared Cu_2O/TiO_2 nanotube p-n junction arrays using a photoreduction method, but there was no PV effect¹⁷² Li *et al.*¹⁷¹ created 10 Cu₂O/TiO₂ p-n heterojunctions by combining two methods. TiO₂ nanotube

FIG. 2. The Cu₂O/TiO₂ electrode photocurrent with RuO₂ counter electrode. Reprinted with permission from Siripala *et al.*, Sol. Energy Mater. Sol. Cells **77**, 229–237 (2003). Copyright 2003 Elsevier.

FIG. 3. The Cu₂O/TiO₂ electrode photocurrent with Pt counter electrode. Reprinted with permission from Siripala *et al.*, Sol. Energy Mater. Sol. Cells **77**, 229–237 (2003). Copyright 2003 Elsevier.

FIG. 4. Scheme for Cu₂O/TiO₂ with electrodes. Reprinted with permission from Zainun *et al.*, Mater. Lett. **66**, 254–256 (2012). Copyright 2012 Elsevier.

arrays were prepared using a two-step anodization process and then *p*-type Cu₂O was electrodeposited into the TiO₂ nanotube channels. The solar cells were annealed at 200 °C in flowing Ar (200 SCCM) for 1 h to make the Cu₂O thin film more continuous and uniform. Next, the top contact electrode was prepared with a gold film

FIG. 5. J–V curves for Cu₂O/TiO₂ with different Cu₂O deposition times. Reprinted with permission from Zainun *et al.*, Mater. Lett. **66**, 254–256 (2012). Copyright 2012 Elsevier.

FIG. 6. Schematic diagram of Cu₂O/TiO₂. Reprinted with permission from Li *et al.*, Chem. Phys. Lett. **501**, 446–450 (2011). Copyright 2011 Elsevier.

(10-nm thick) by coating onto the Cu₂O film. The I-V curves of the solar cells were measured at 100 mW/cm² under simulated air mass (AM) 1.5 illumination. The open circuit voltage (V_{oc}), short circuit current density (J_{SC}), and fill factor (FF) of the Cu₂O/TiO₂ solar cells were 0.09–0.25 V, 0.1–0.33 mA/cm², and ~0.27, respectively. Additionally, annealing the solar cells improved the PV parameters. The efficiency was ~0.01%, V_{oc} = 0.1 V, J_{SC} = 0.33 mA/cm², and FF = 0.27.¹⁷¹ Figure 6 shows a schematic of Cu₂O/TiO₂, and Fig. 7 shows the J–V characteristics before (left) and after annealing (right).

Pavan *et al.*⁹ produced TiO₂/Cu₂O solar cells by spray pyrolysis. The authors generated PV devices with varying TiO₂ and Cu₂O layer thicknesses and the films were fabricated to form cells used on silver as a back contact. The front electrode was made of FTO. Additionally, a metal frame was soldered to the solar cell. Pavan *et al.*⁹ studied the impact of layer thicknesses on the PV device performance. The thickness of TiO₂ ranged from 0.6 to 0.32 μ m and that of Cu₂O ranged from 0.18 to 0.58 μ m. They observed the best results when the thickness of the Cu₂O film was greater than 500 nm: V_{oc} up to 350 mV and J_{SC} of 0.4 mA/cm². Figure 8 shows a crosssection view of the solar cell, and Fig. 9 shows dark and light J-V measured at the top of the solar cell. Pavan *et al.*⁹ concluded that to improve the PV characteristics of TiO_2/Cu_2O , the conduction band offset at the *n*- TiO_2/p - Cu_2O interface had to be reduced and larger higher-quality Cu_2O grains had to be synthesized.

Rokhmat et al.⁶⁰ also reported the construction of TiO₂/CuO and TiO₂/CuO/Cu solar cells. The TiO₂/CuO/Cu solar cells were created using a fixed current electroplating and spray method with varying electroplating currents (0.1-100 mA) for 10 s. The PV devices were fabricated by cells formed using polymer electrolyte and aluminum counter electrode(s). The I-V characteristics were measured at an intensity of 120 W/m². First, the authors compared solar cells before and after adding the copper particles with a current source of 1.0 mA for 10 s. Circuit-current, open circuit voltage, FF, and efficiency were 0.8 mA, 0.62 V, 0.33%, and 0.14%, respectively, for TiO₂/CuO, and 0.12 mA, 0.61 V, 0.35%, and 0.21%, respectively, for TiO₂/CuO/Cu. Next, the authors changed the electroplating current and found that the efficiency was best (0.80%) at 10 mA. Finally, the I-V characteristics of TiO2/CuO/Cu were measured at various electroplating times with a constant electroplating current of 10 mA. Circuit-current, open circuit voltage, FF, and efficiency were in the range of 0.05-0.72 mA, 0.58-0.6 4 V, 0.34-0.42, and 0.16%-1.62%, respectively. The best result was achieved when the electroplating process was 20 s long.6

Hussain *et al.*⁴⁷ fabricated Cu₂O/TiO₂ by electrodeposition of Cu₂O structure on a radiofrequency sputtered TiO₂ film. The counter electrode was platinum foil and the reference electrode was Ag/AgCl (4M KCl). Finally, an indium contact was stuck to the Cu₂O thin layer. The authors characterized the solar cell by scanning electron microscopy, X-ray diffraction (XRD), and UV spectroscopy. Furthermore, they performed I-V and C–V measurements. The light intensity was set at 90 mW/cm². The maximum FF, power conversion efficiency, short circuit current density, and open circuit voltage was ~0.36, ~0.15%, 0.0027 A/cm², and 0.34 V, respectively. They concluded that the low efficiency may have been due to "band discontinuity at the interface edges," "fast electron hole pair recombination," "defects at the interface," "a large lattice mismatch," or "the exits of other planes of Cu₂O".⁴⁷ Figure 10 shows the I-V curves of the Cu₂O/TiO₂.

FIG. 7. J-V curves before (left) and after annealing (right). Reprinted with permission from Li et al., Chem. Phys. Lett. 501, 446-450 (2011). Copyright 2011 Elsevier.

FIG. 8. Cross-section view of TiO₂/Cu₂O. Reprinted with permission from Pavan et al., Sol. Energy Mater. Sol. Cells 132, 549–556 (2015). Copyright 2015 Elsevier.

Hussain *et al.*¹¹⁴ also reported on Cu₂O/TiO₂ thin-film heterojunctions in which the TiO₂ films were created via anodization of Ti foil, and the Cu₂O films were deposited on the TiO₂ film by electrodeposition. In this experiment, the authors studied the structural and morphological properties, performed X-ray diffraction (XRD) analysis, and measured the C–V and I–V characteristics. The turn on voltage of the device was 520 mV. On the basis of a C–V graph, the authors estimated that the effective carrier concentration was N = 8 × 10²² 1/m³ and the built-in potential was ~0.80 V.¹¹⁴ Figure 11 shows the C⁻²–V characteristics of this Cu₂O/TiO₂ PV device.

Ichimura and Kato¹⁰⁶ described TiO_2/Cu_2O solar cells prepared using two chemical techniques. The TiO_2 structures were manufactured by electrophoretic deposition using a TiO_2 sol solution on an indium-tin-oxide glass substrate. The Cu₂O thin films

FIG. 9. Light and dark and J-V measured at the top of the solar cell. Reprinted with permission from Pavan *et al.*, Sol. Energy Mater. Sol. Cells **132**, 549–556 (2015). Copyright 2015 Elsevier.

FIG. 10. I-V curves of the Cu₂O/TiO₂. Reprinted with permission from Hussain *et al.*, Thin Solid Films **522**, 430–434 (2012). Copyright 2012 Elsevier.

were prepared by electrodeposition using an aqueous CuSO₄ solution. To create solar cells, indium was evaporated onto the Cu₂O to form an electrode. Finally, the solar cells were annealed in air at 120 and 220 °C for 30 min. The PV curves were measured by irradiating the indium-tin oxide side of the cell with a solar simulator (~100 mW/cm², AM 1.5). The PV characteristics were as follows: $V_{oc} = 0.22 \text{ V}, I_{SC} = 0.57 \text{ mA/cm}^2, \text{FF} = 0.45, \text{ and efficiency} = 0.056\%$ before annealing, and the authors achieved a conversion efficiency of ~0.11% after annealing at 120 °C. Ichimura and Kato¹⁰⁶ concluded that the low efficiency was due to poor quality copper oxide. They proposed that increasing the conversion efficiency of the cell could be improved by improving the crystallinity of copper (1) oxides by avoiding the formation of copper (II) oxide, and by annealing in reduced ambient O₂ pressure and at high temperatures.¹⁰⁶ Figure 12 shows the I-V curves in the dark and light (a) before annealing and (b) after annealing the TiO_2/Cu_2O .

FIG. 11. C⁻²–V curve of Cu₂O/TiO₂. Reprinted with permission from Hussain *et al.*, Mater. Sci. Semicond. Process. **25**, 181–185 (2014). Copyright 2014 Elsevier.

FIG. 12. I–V characteristics in the dark and light for the TiO₂/Cu₂O (a) before annealing and (b) after annealing. Reprinted with permission from M. Ichimura and Y. Kato, Mater. Sci. Semicond. Process. **16**(6), 1538–1541 (2013). Copyright 2013 Elsevier.

Luo *et al.*¹⁷³ manufactured Cu₂O/TiO₂ in two steps. TiO₂ nanorod films were deposited on glass covered FTO using a hydrothermal reaction. The TiO₂ layer was also below a compact layer beneath the nanorod layer. Next, a Cu₂O thin film was electrodeposited onto the TiO₂ nanorod structure. The electrodeposition time for the Cu₂O films was varied (20 min, 25 min, 30 min, 50 min, and 60 min) under -0.5 V. Finally, a gold layer was sputtered on top to form the contact electrode of each solar cell. The J-V curves of the heterojunction solar cells were investigated in the dark and under irradiation (1 Sun, 100 mW/cm²) at room temperature. The highest conversion efficiency of this Cu₂O/TiO₂ solar cell was 1.25%, which was achieved after a Cu₂O film electrodeposition time of 30 min.¹⁷³

Sawicka-Chudy *et al.*³² produced a TiO₂/Cu₂O thin-film heterojunction solar cell using a DC magnetron-sputtering technique. They analyzed the I-V characteristics, optical characteristics, composition, and morphology, and performed atomic force microscopy and XRD analyses of the TiO₂/Cu₂O. To create solar cells, Au contacts were adhered to the copper oxide and indium tin oxide using conductive glue. The I–V curves of TiO₂/Cu₂O were measured in the dark and under illumination using a halogen lamp as the light source at 800 W/m². One of the TiO₂/Cu₂O heterojunctions was photosensitive, but exhibited no PV activity.³²

Recently, Suleiman *et al.*¹⁷⁴ fabricated FTO-TiO₂/Cu₂O-Cu and FTO-ZnO/Cu₂O-Cu solar cells. Copper oxide films were electrodeposited on sprayed ZnO and TiO₂ structures. The authors analyzed the compositional, optical, and electrical properties. The PV characteristics for the FTO-TiO₂/Cu₂O-Cu were as follows: circuit current density (J_{SC}), 5.8 μ A/cm²; V_{oc}, 0.03 V; and efficiency, 0.037% and those for FTO-ZnO/Cu₂O-Cu were as follows: J_{SC}, 0.093 μ A/cm²; V_{oc}, 0.0364 V; and efficiency, 0.0076%. The FTO-TiO₂/Cu₂O-Cu solar cells had better efficiency than the FTO-ZnO/Cu₂O-Cu solar cells.¹⁷⁴

Table IV summarizes the PV characteristics, thickness, thinfilm fabrication methods, and contact(s) for copper oxide and TiO_2 based solar cells.

V. COMBINATION OF COPPER OXIDE WITH OTHER MATERIALS

Here, we briefly discuss and explain the available combinations of copper oxides with other materials that can be used as solar cells. These materials and combinations are as follows: Cu_2O/ZnO , Ga_2O_3/Cu_2O , and CuO/Si.

Minami *et al.*¹⁷⁵ produced Al-doped ZnO (AZO)/nondoped ZnO (ZO)/Cu₂O solar cells. Copper oxide sheets were manufactured by oxidizing the Cu sheets with a heat treatment process and ZO and AZO, and fabricated using a pulsed laser deposition method. The ohmic electrode on the back surface of Cu₂O was Cu₂S or Au. The authors studied the influence of the thickness of ZO thin-films ranging from 0 to 150 nm on V_{oc}, J_{SC}, FF, and efficiency. They showed that the efficiency of AZO/ZO/Cu₂O solar cells was greater than 3% (3.83%) for a n-ZO thin-film layer with a 30–50 nm thickness. Other PV parameters were $J_{SC} = 0.69 \text{ mA/cm}^2$ and FF = 0.55.¹⁷⁵

Lee *et al.*⁶⁴ demonstrated Ga₂O₃/Cu₂O heterojunction devices with a 10-nm-thick Ga₂O₃ buffer layer and *p*-type absorber Cu₂O (thickness: 2.5 μ m). The bottom electrode was a 200-nm-thick layer of Au. The device had a 1- μ m-thick Al top-electrode grid and a 95-nm-thick MgF₂ antireflective layer. The PV characteristics were as follows: V_{oc} = 1.2 V, J_{SC} = 7.3 mA/cm², FF = 44.7%, and efficiency 3.97%. They also studied the temperature dependence of the J–V characteristics and concluded that the "dominant recombination process occurs near the Ga₂O₃/Cu₂O interface."⁶⁴

Masudy-Panah *et al.*¹⁷⁶ produced *p*-CuO(Ti)/*n*-Si solar cells by sputter deposition at room temperature and rapid thermal annealing. They studied the impact of Ti-doped copper (1) oxide on the PV properties. The Ti concentration varied from ~0.049 to ~0.598%. The potential of Ti doping for improving the PV properties and conductivity of CuO devices was analyzed. They investigated CuO(Ti) thin-films using atomic force microscopy, Raman spectroscopy, XRD, X-ray photoelectron spectroscopy, highresolution transmission electron microscopy, and the I-V characteristics of *p*-CuO(Ti)/*n*-Si heterojunction solar cells. The efficiency of *p*-CuO(Ti)/*n*-Si varied from 0.06% to 0.39%. The highest efficiency was 0.39%, which was achieved with a Ti concentration of 0.099.¹⁷⁶

TABLE IV. Photovoltaic	characteristi	ics of TiO ₂ /Cu ₂ O, TiO ₂ /CuO solar cells.							
Device structure	Reference	Method of fabrication	Isc (mA)	Jsc (mA/cm ²)	V _{oc} (mV)	FF (-)	۲ (%)	Thickness of layers	Electrodes
Cu ₂ O/TiO ₂	162	Electrodeposited Cu ₂ O, TiO ₂ deposited by physical vapor deposition	5	0.70	460	73	57	TiO ₂ 0.1 μm	Ag/AgCl (reference electrode) platinum wire (counter electrode)
Cu ₂ O/TiO ₂	173	Electrodeposited Cu ₂ O, TiO ₂ hydrothermal reaction	5	8.91	364	~0.39	1.25	$Cu_2 O \sim 1.5 \mu m$	Au electrode
Cu ₂ O/TiO ₂	47	(rf) magnetron sputtering -TiO ₂ electrodeposition -Cu ₂ O	8	0.001 27	340	~0.36	~0.15	TiO ₂ 0.1 μm, Cu ₂ O ~7 μm	Platinum foil -counter electrode, reference electrode -Ag/AgCl (4 M KCl)
				Befoi	re annea	ling:			
	106	TiO ₂ -sol solution, Cu ₂ O	а	0.57	220	0.45	0.056	TiO ₂ - 0.4, 0.5, 0.6 µm.	Counter electrode- Pt sheet
		-electrodeposition		Afte	r anneal	ing:		$Cu_2 O - 0.5 \mu m$	(1.8 cm separation)
			5	1.34	180	0.46	0.11		
Cu ₂ O/TiO ₂	6	Spray pyrolysis	59	0.40	350	0.25	a	TiO ₂ - 0.06-0.32 μm, Cu ₂ O - 0.18-0.58 μm	Ag back contacts, FTO –front electrode
				Befo	re annea	ling:		¢	TiO ₂ nanotubes -working
		TiO2 nanotube arrays—	в	0.10-0.33	90-250	~0.27	8	5	electrode, Ag/AgCl reference electrode, nlatinum wire
	171	anodization process, Cu2O— electrodenosition		After anneal	ing at 2(00°C for	1 h	•	counter electrode, 10 nm
			B	0.33	100	0.27	~0.01	5	Au - top contact electrode
Cu ₂ O/TiO ₂	128	TiO ₂ - squeegee method, Cu ₂ O electrochemical deposition	5	0.003 1	470	ø	0.0005	$TiO_2 - 16 \mu m$	Indium -top electrode, FTO bottom electrode
TiO ₂ /Cu ₂ O	174	Cu ₂ O- electrodeposition sprayed - TiO ₂	a	0.005 8	30	a	0.037	TiO ₂ – 0.04 µm	Graphite rod- counter electrode, Ag/AgCl - reference electrode
				After treatm	ent by el	ectroplat	ing		
Cu(NO ₃) ₂ ·3H ₂ O-	169	Sprav and electroplating	0.31	5	430	0.31	0.35	હ	ಡ
containing TiO ₂			Aft	er NaOH pos by el	st-treatm ectropla	ting	treated		
			0.43	a	006	0.34	1.24		

10, 010701-9

Device structure	Reference	Method of fabrication	I _{SC} (mA)	Jsc (mA/cm ²)	V _{oc} (mV)	FF (-)	(%) L	Thickness of layers	Electrodes
TiO ₂ /CuO			0.08	a	620	0.33	0.14		
	60	Fix current electroplating and spray method		With electroplating electroplat	process 20 s ar ing current of	nd with constant 10 mA		50	FTO, copper rod
TiO2/CuO/Cu			0.72	:	640	0.42	1.62		
'No data.									

Masudy-Panah *et al.*¹⁷⁷ produced *p*-CuO/*n*-Si by using rapid thermal annealing methods and conventional sputtering. They studied the influence of thermal treatment and working pressure during deposition on the PV properties of copper-oxide based devices. The highest efficiency achieved was 1.0%, $V_{oc} = 4.9$ V, $J_{SC} = 6.4$ mA/cm², and FF = 32% for solar cells annealed at 300 °C for 1 min. They concluded that the quality of the crystalline structure and interface might be improved and the carrier recombination rate reduced by increasing the working pressure during deposition.¹⁷⁷

VI. THICKNESS OF COPPER OXIDE THIN-FILMS

REVIEW

The thickness of the copper oxide layers plays a key role in the conversion efficiency of copper oxide-based solar cells due to the discrepancy between the optical absorption length and copper oxide thickness. The thickness of copper oxide thin films influences the charge carrier transport properties and light absorption.¹⁷⁸

Musselman *et al.*¹⁷⁹ studied the thickness of copper (1) oxide thin films in nanowire and bilayer Cu₂O-ZnO solar cells. They investigated the influence of Cu₂O thickness on V_{oc}, J_{SC}, and η . The thickness of the Cu₂O layer varied from 2 to 4.5 μ m for bilayer solar cells and from 2 to 3.5 μ m for nanowire solar cells. The highest efficiency was ~0.6% for bilayer solar cells and ~0.38% for nanowire solar cells with Cu₂O-ZnO layer thicknesses ranging from approximately 2.7 to 3.0 μ m.¹⁷⁹

Masudy-Panah *et al.*¹⁷⁸ sputtered the CuO films for photoelectrochemical water splitting with different film thicknesses, ranging from 0.2 to 0.7 μ m. They observed that increasing the thickness of the Cu₂O layer from 0.2 to 0.7 μ m increased the photocurrent. Increasing the Cu₂O layer thickness above 0.7 μ m, however, degraded the photocurrent. They also attributed the initial increase in the photocurrent to the improvement in the light absorption capabilities of the thicker CuO thin films as well as an increase in recombination.¹⁷⁸ The authors proposed an optimum thickness of ~0.55 μ m, which produced a photocurrent of 1.68 mA/cm² at 0 V.¹⁷⁸

VII. CONCLUSION

In summary, we presented the main properties of TiO_2 , cuprous oxide (Cu₂O), and cupric oxide (CuO); their potential applications, and, to the best of our knowledge, all of the solar cells based on copper oxide and TiO_2 . Additionally, we provided a short review of the combination of copper oxide with other materials: Cu₂O with ZnO, CuO with ZnO, Ga₂O₃/Cu₂O, and CuO with Si, and the influence of the thickness of copper oxide layers on efficiency.

We compared the PV characteristics of solar cells, thicknesses of copper oxide and titanium layers, and electrodes to created heterojunctions. The highest energy conversion was for a TiO₂/CuO/Cu solar cell—1.62% produced by spray (TiO₂) and a fixed current electroplating method (Cu₂O). The efficiency results of the cells based on copper oxides are low compared with the theoretical results. To improve their performance, some researchers have proposed the following: increase the crystallinity of Cu₂O,¹⁰⁶ avoid the formation of copper oxides other than copper (1) oxide or copper (1) oxide, avoid defects at the heterojunction interface,¹⁷¹ avoid an excessively thick copper oxide layer,¹⁷¹ and use textured electrodes and antireflective coatings.¹⁴⁷ Moreover, avoiding "band discontinuity at the interface edges",⁴⁷ synthesizing larger and

FABLE IV. (Continued.)

higher quality copper oxide grains, reducing conduction band off set at the TiO₂/Cu₂O interface,⁹ and increasing transmission of the top electrode may improve the efficiency.¹⁷¹ Finally, using a NaOH posttreatment will help to improve the contact between the electrolyte, aluminum, and the thin films.⁶⁰

This manuscript is intended as a review of the major literature to acquaint the readers with experimental results, and some general and theoretical principles of thin-film solar cells.

REFERENCES

¹P. Sawicka-Chudy, G. Wisz, Ł. Głowa, M. Sibiński, M. Cholewa, S. Adamiak, E. Rybak-Wilusz, and B. Cieniek, "TiO₂ grown by pulsed laser deposition and reactive DC direct current sputtering as an intermediate buffer layer in photovoltaic structures," J. Nanoelectron. Optoelectron. 13(7), 995–1000 (2018).

²D. M. Chapin, C. S. Fuller, and G. L. Pearson, "A new silicon p-n junction photocell for converting solar radiation into electrical power," J. Appl. Phys. **25**, 676–677 (1954).

³L. Zhu, "Development of metal oxide solar cells through numerical modelling," Ph.D. thesis, University of Bolton.

⁴M. Telkes, "The efficiency of thermoelectric generators. I," J. Appl. Phys. 18, 1116 (1947).

⁵Vanguard I the world's oldest satellite still in orbit archived 2015-03-21 at the wayback machine, accessed September 24, 2007.

⁶D. E. Carlson and C. R. Wronski, "Amorphous silicon solar cell," Appl. Phys. Lett. **28**, 671–673 (1976).

⁷M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 52)," Prog. Photovoltaics: Res. Appl. **26**, 427–436 (2018).

⁸ R. Jose, T. Velmurugan, and R. Seeram, "Metal oxides for dye-sensitized solar cells," J. Am. Ceram. Soc. **92**, 289–301 (2009).

⁹M. Pavan, S. Rühle, A. Ginsburg, D. A. Keller, H.-N. Barad, P. M. Sberna, D. Nunes, R. Martins, A. Y. Anderson, A. Zaban, and E. Fortunato, "TiO₂/Cu₂O all-oxide heterojunction solar cells produced by spray pyrolysis," Sol. Energy Mater. Sol. Cells **132**, 549–556 (2015).

¹⁰S. Rühle, A. Y. Anderson, H. N. Barad, B. Kupfer, Y. Bouhadana, E. Rosh-Hodesh, and A. Zaban, "All-oxide photovoltaics," J. Phys. Chem. Lett. 3, 3755–3764 (2012).

 11 J. Morasch, S. Li, J. Brötz, W. Jaegermann, and A. Klein, "Reactively magnetron sputtered Bi₂O₃ thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties," Phys. Status Solidi A **211**, 93–100 (2014).

¹²B. D. Yuhas and P. Yang, "Nanowire-based all-oxide solar cells," J. Am. Chem. Soc. **131**, 3756–3761 (2009).

 13 R. J. Iwanowski and D. Trivih, "Cu/Cu₂O Schottky barrier solar cells prepared by multistep irradiation of a Cu₂O substrate by H⁺ ions," Sol. Cells 13, 253–264 (1985).

¹⁴J. T. Lue, "Theory of Schottky barrier heights of amorphous MIS solar cells," Solid-State Electron. 25, 869–874 (1982).

 15 R. J. Iwanowski, "n-V_{oc} diagram as a useful method of investigating the interfacial layer effects in Schottky barrier solar cells: The example of Cu/Cu₂O photovoltaic junctions," Sol. Cells **18**, 129–137 (1986).

¹⁶S. Darwish, "DC electric and photoelectric measurements of CdTe thin film in Schottky-barrier cells," Physica B 349, 296–303 (2004).

¹⁷ M. Soylu and F. Yakuphanoglu, "Photovoltaic and interface state density properties of the Au/*n*-GaAs Schottky barrier solar cell," Thin Solid Films **519**, 1950–1954 (2011).

¹⁸J. F. Wager, "Transparent electronics: Schottky barrier and heterojunction considerations," Thin Solid Films **516**, 1755–1764 (2008).

¹⁹R. Singh, M. A. Green, and K. Rajkanan, "Review of conductor-insulatorsemiconductor (CIS) solar cells," Sol. Cells 3, 95–148 (1981).

²⁰ R. T. Tung, "Recent advances in Schottky barrier concepts," Mater. Sci. Eng.: R: Rep. 35, 1–138 (2001). ²¹Z. Li, K. Tong, R. Shi, Y. Shen, Y. Zhang, Z. Yao, J. Fan, M. Thwaites, and G. Shao, "Reactive plasma deposition of high quality single phase CuO thin films suitable for metal oxide solar cells," J. Alloys Compd. **695**, 3116–3123 (2017).

 $^{\mathbf{22}}$ L. Lu, M. L. Guo, S. Thornley, X. P. Han, J. H. Hu, M. J. Thwaites, and G. S. Shao, "Remote plasma sputtering deposited Nb-doped TiO₂ with remarkable transparent conductivity," Sol. Energy Mater. Sol. Cells **149**, 310–319 (2016).

²³ Y. L. Shen, M. L. Guo, X. H. Xia, and G. S. Shao, "Role of materials chemistry on the electrical/electronic properties of CuO thin films," Acta Mater. 85, 122–131 (2015).

 $^{\mathbf{24}}$ X. W. Zou, H. Q. Fan, Y. M. Tian, M. G. Zhang, and X. Y. Yan, "Chemical bath deposition of Cu₂O quantum dots onto ZnO nanorod arrays for application in photovoltaic devices," RSC Adv. 5, 23401–23409 (2015).

²⁵Y. Wang, J. Tao, X. Wanga, Z. Wang, M. Zhang, G. He, and Z. Sun, "A unique Cu₂O/TiO₂ nanocomposite with enhanced photocatalytic performance under visible light irradiation," Ceram. Int. 43(6), 4866–4872 (2016).

²⁶ M. Sibiński and K. Znajdek, "Innovative elastic thin-film solar cell structures," in *Solar Cells—Thin-Film Technologies* (IntechOpen, 2011).

²⁷S. Bhanushali, P. Ghosh, A. Ganesh, and W. L. Cheng, "1D copper nanostructures: Progress, challenges and opportunities," Small 11(11), 1232–1252 (2015).

²⁸J. P. Yasomanee and J. Bandara, "Multi-electron storage of photoenergy using Cu₂O-TiO₂ thin film photocatalyst," Sol. Energy Mater. Sol. Cells **92**(3), 348–352 (2008).

²⁹ P. Sawicka-Chudy, Ł. Głowa, Sz. Górny, G. Wisz, M. Sibiński, E. Rybak-Wilusz, M. Cholewa, and P. Potera, "Numerical simulation and analysis of experimental TiO₂/Cu₂O thin film for photovoltaic structures," J. Nanoelectron. Optoelectron. **13**(5), 715–721 (2018).

³⁰P. Sawicka-Chudy, M. Sibiński, G. Wisz, E. Rybak-Wilusz, and M. Cholewa, "Numerical analysis and optimization of Cu₂O/TiO₂, CuO/TiO₂, nanostructures PV using SCAPS," J. Phys.: Conf. Ser. **1033**, 1–10 (2018).

³¹P. Sawicka-Chudy, M. Sibiński, M. Cholewa, A. Sosna-Głębska, and G. Wisz, "Symulacja numeryczna ogniw heterozłączowych TiO₂/Cu₂O(CuO), przy pomocy programu SCAPS," Przegl. Elektrotech. **8**, 17–20 (2018).

³²P. Sawicka-Chudy, G. Wisz, R. Pawełek, P. Szczepan, S. Adamiak, B. Cieniek, P. Potera, M. Cholewa, M. Sibiński, and Ł. Głowa, "Characteristics of TiO₂, Cu₂O, and TiO₂/Cu₂O thin films for application in PV devices," AIP Adv. **9**(5), 1–12 (2019).

³³M. J. Gázquez, J. P. Bolívar, R. Garcia-Tenorio, and F. Vaca, "A review of the production cycle of titanium dioxide pigment," Mater. Sci. Appl. 5, 441–458 (2014).

³⁴L. Zhu, G. Shao, and J. K. Luo, "Numerical study of metal oxide heterojunction solar cells," Semicond. Sci. Technol. 26(8), 1–9 (2011).

³⁵L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, and D. D. Dionysiou, "Copper modified-TiO₂ catalysts for hydrogen generation through photoreforming of organics. A short review," Int. J. Hydrogen Energy **39**, 16812–16831 (2014).

³⁶M. Stamate, G. Lazar, and I. Lazar, "Anatase-rutil TiO₂ thin films deposited in a D.C. magnetron sputtering system," Rom. J. Phys. **53**(1-2), 217–221 (2008).

³⁷B. Karunagaran, K. Kim, D. Mangalaraj, J. Yi, and S. Velumani, "Structural, optical and Raman scattering studies on DC magnetron sputtered titanium dioxide thin films," Sol. Energy Mater. Sol. Cells 88(2), 199–208 (2005).

³⁸Y. Bessekhouad, D. Robert, and J. V. Weber, "Photocatalytic activity of Cu₂O/TiO₂, Bi₂O₃/TiO₂ and ZnMn₂O₄/TiO₂ heterojunctions," Catal. Today **101**, 315–321 (2005).

³⁹M. Ferroni, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, and G. Sberveglieri, "Characterization of a nanosized TiO₂ gas sensor," Nanostruct. Mater. 7(7), 709–718 (1996).

⁴⁰P. A. Korzhavyi and B. Johansson, "Literature review on the properties of cuprous oxide Cu₂O and the process of copper oxidation," SKB Technical Report No. TR-11-08, Swedish Nuclear Fuel and Waste Management Company, 2011.

⁴¹ Mineral data, http://www.webmineral.com/data; accessed September 10, 2019.
 ⁴² D. Mergel, "Modeling thin TiO₂ films of various densities as an effective optical medium," Thin Solid Films **397**(1-2), 216–222 (2001).

⁴³F. Forcade-Zamora, "Evaluation of the three-dimensional CuO/TiO₂ interface for possible use in the conversion of solar energy," Ph.D. thesis, University of La Habana, 2017. ⁴⁴S. Y. Kim, "Simultaneous determination of refractive index, extinction coefficient, and void distribution of titanium dioxide thin film by optical methods," Appl. Opt. **35**(34), 6703–6707 (1996).

⁴⁵A. K. Sharma, R. K. Tareja, U. Wilker, and W. Schade, "Phase transformation in room temperature pulsed laser deposited TiO₂ thin films," Appl. Surf. Sci. 206 137–148 (2003).

⁴⁶P. B. Nair, V. B. Justinvictor, G. P. Daniel, K. Joy, V. Ramakrishnan, and P. V. Thomasa, "Effect of RF power and sputtering pressure on the structural and optical properties of TiO_2 thin films prepared by RF magnetron sputtering," Appl. Surf. Sci. **257**, 10869–10875 (2011).

⁴⁷S. Hussain, C. Cao, Z. Usman, Z. Chen, G. Nabi, W. S. Khan, Z. Ali, F. K. Butt, and T. Mahmood, "Fabrication and photovoltaic characteristics of Cu₂O/TiO₂ thin film heterojunction solar cell," Thin Solid Films **522**, 430–434 (2012).

⁴⁸D. K. Zhang, Y. C. Liu, Y. L. Liu, and H. Yang, "The electrical properties and the interfaces of Cu₂O/ZnO/ITO p-i-n heterojunction," Condens. Matter **351**, 178–183 (2004).

⁴⁹N. Balasubramanian and A. Subrahmanyam, "Electrical and optical properties of reactively evaporated indium tin oxide (ITO) films dependence on substrate temperature and tin concentration," J. Phys. D: Appl. Phys. **22**, 206–209 (1989).

⁵⁰T. Minami, T. Miyata, and T. Yamamoto, "Work function of transparent conducting multicomponent oxide thin films prepared by magnetron sputtering," Surf. Coat. Technol. **108-109**, 583–587 (1998).

⁵¹K. Zakrzewska, M. Radecka, and M. Rekas, "Effect of Nb, Cr, Sn additions on gas sensing properties of TiO₂ thin films," Thin Solid Films **310**, 161–166 (1997).
 ⁵²A. Chen, G. Yang, H. Long, F. Li, Y. Li, and P. Lu, "Nonlinear optical properties of laser deposited CuO thin films," Thin Solid Films **517**, 4277–4280 (2009).

⁵³ M. Parhizkar, S. Singh, P. K. Nayak, N. Kumar, K. P. Muthe, S. K. Gupta, R. S. Srinivasa, S. S. Talwar, and S. S. Major, "Nanocrystalline CuO films prepared by pyrolysis of Cu-arachidate LB multilayers," Colloids Surf., A 257-258, 277-282 (2005).

⁵⁴H. Tang, K. Prasad, R. Sanjinés, and F. Lévy, "TiO₂ anatase thin films as gas sensors," Sens. Actuators, B 26(1-3), 71–75 (1995).

⁵⁵G. Jiang, R. Wang, H. Jin, Y. Wang, X. Sun, S. Wang, and T. Wang, "Preparation of Cu₂O/TiO₂ composite porous carbon microspheres as efficient visible light-responsive photocatalysts," Powder Technol. **212**, 284–288 (2012).

 56 S. J. A. Moniz and J. Tang, "Charge transfer and photocatalytic activity in CuO/TiO₂ nanoparticle heterojunctions synthesised through a rapid, one-pot, microwave solvothermal route," ChemCatChem 7, 1659–1667 (2015).

⁵⁷J. B. Goodenough, in Proceedings of the Second European Conference, Veldhoven, The Netherlands, June, 1982.

⁵⁸K. Znajdek, "Flexible solar cells," Ph.D. thesis, Lodz University of Technology, 2014.

⁵⁹S. C. Lo, C. F. Lin, C. H. Wu, and P. H. Hsieh, "Capability of coupled CdSe/TiO₂ for photocatalytic degradation of 4-chlorophenol," J. Hazard. Mater. **114**, 183–190 (2004).

⁶⁰ M. Rokhmat, E. Wibowo, Sutisna, Khairurrijal, and M. Abdullah, "Performance improvement of TiO₂/CuO solar cell by growing copper particle using fix current electroplating method," Procedia Eng. **170**, 72–77 (2017).

⁶¹J. Yu, W. Liu, and H. Yu, "A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity," Cryst. Growth Des. **8**(3), 930–934 (2008).

⁶² M. A. Fox and M. T. Dulay, "Heterogeneous photocatalysis," Chem. Rev. 93(1), 341–357 (1993).

⁶³I. Manouchehri, K. Gholami, B. Astinchap, R. Mordian, and D. Mehrparvar, "Investigation of annealing effects on optical properties of Ti thin films deposited by RF magnetron sputtering," Optik **127**, 5383–5389 (2016).

⁶⁴Y. S. Lee, D. Chua, R. E. Brandt, S. Cheng Siah, J. V. Li, J. P. Mailoa, S. W. Lee, R. G. Gordon, and T. Buonassisi, "Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells," Adv. Mater. 26(27), 4704–4710 (2014).

⁶⁵Y. S. Lee, J. Heo, S. C. Siah, J. P. Mailoa, R. E. Brandt, S. B. Kim, R. G. Gordon, and T. Buonassisi, "Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells," <u>Energy Environ. Sci. 6</u>, 2112–2118 (2013).

⁶⁶N. Ozer, H. Demiryont, and J. H. Simmons, "Optical properties of sol-gel spincoated TiO₂ films and comparison of the properties with ion-beam-sputtered films," Appl. Opt. **30**, 3661–3666 (1991).

⁶⁷V. Kiisk, I. Sildos, A. Suisalu, and J. Aarik, "Spectral narrowing of self-trapped exciton emission in anatase thin films," Thin Solid Films **400**(1-2), 130–133 (2001).

⁶⁸J. A. Byrne, B. R. Eggins, S. Linquette-Mailley, and P. S. M. Dunlop, "The effect of hole acceptors on the photocurrent response of particulate TiO₂ anodes," Analyst **123**, 2007–2012 (1998).

⁶⁹J. H. Kim, S. Lee, and H. S. Im, "The effect of target density and its morphology on TiO₂ thin films grown on Si(100) by PLD," Appl. Surf. Sci. **151**, 6–16 (1999).

⁷⁰S. Murugesan, P. Kuppusami, N. Parvathavarthini, and E. Mohandas, "Pulsed laser deposition of anatase and rutile TiO₂ thin films," Surf. Coat. Technol. 201(18), 7713–7719 (2007).

⁷¹L. Ponce Cabrera, Y. Peñaloza Mendoza, and F. C. Alvira, "TiO₂ thin films obtained by pulsed laser deposition under different excitation regimes," in Latin America Optics and Photonics Conference 2018, Lima, Peru, 12–15 November 2018.

 72 Y. Khuanbay, N. Kh Ibrayev, D. A. Afanasyev, and A. K. Aimukhanov, "Production of nanostructured TiO₂ films by pulsed laser deposition," IOP Conf. Ser.: Mater. Sci. Eng. 81, 1–4 (2015).

⁷³ A. Ali, I. Ruzybayev, E. Yassitepe, A. Karim, S. Ismat Shah, and A. S. Bhatti, "Phase transformations in the pulsed laser deposition grown TiO₂ thin films as a consequence of O₂ partial pressure and Nd doping," J. Phys. Chem. C **119**(21), 11578–11587 (2015).

 74 B. Gao, S. Zhang, X. Ju, Y. Lin, and X. Wang, "Femtosecond pulsed laser deposition of nanostructured TiO₂ films in atmosphere," AIP Adv. 7, 095206 (2017).

 75 Z. Fu, M. Zhou, S. Zhang, L. Chen, and Q. Qin, "I-V and C-V properties of TiO₂ thin film by pulsed-laser reactive deposition," Chin. Sci. Bull. **43**(16), 1344–1349 (1998).

⁷⁶C. Ho, S.-B. Lee, and J.-H. Boo, "Deposition of TiO₂ thin films using RF magnetron sputtering method and study of their surface characteristics," Thin Solid Films **475**(1-2), 183–188 (2005).

⁷⁷N. Madaoui, L. Bait, K. Kheyar, and N. Saoula, "Effect of argon-oxygen mixing gas during magnetron sputtering on TiO₂ coatings," Adv. Mater. Sci. Eng. 2017, 1–6.

⁷⁸S. Norhafiezah, R. M. Ayub, M. K. Md Arshad, A. H. Azman, M. F. Fatin, M. A. Farehanim, and U. Hashim, "The RF power effect on the surface morphology of titanium dioxide (TiO₂) film," in 2014 IEEE International Conference on Semiconductor Electronics (ICSE2014) (IEEE, 2014).

 79 M. Selmi, F. Chaabouni, M. Abaab, and B. Rezig, "Preparation and characterization of TiO₂ thin films grown by RF magnetron sputtering," Phys. Status Solidi C 5(10), 3368–3372 (2008).

 80 H. Kikuchi, M. Kitano, M. Takeuchi, M. Matsuoka, M. Anpo, and P. V. Kamat, "Extending the photoresponse of TiO₂ to the visible light region: Photoelectrochemical behavior of TiO₂ thin films prepared by the radio frequency magnetron sputtering deposition method," J. Phys. Chem. B **110**(11), 5537–5541 (2006).

⁸¹ J. D. DeLoach, G. Scarel, and C. R. Aita, "Correlation between titania film structure and near ultraviolet optical absorption," J. Appl. Phys. **85**(4), 2377–2384 (1999).

⁸² F. Forcade, R. Snyders, X. Noirfalise, B. González, C. Laza, and E. Vigil, "A simple technology for CuO/TiO₂ 3D interface fabrication using nanocrystalline oxide powders," Semicond. Sci. Technol. **32**, 1–8 (2017).

⁸³J. Zheng, S. Bao, Y. Guo, and P. Jin, "TiO₂ films prepared by DC reactive magnetron sputtering at room temperature: Phase control and photocatalytic properties," Surf. Coat. Technol. **240**, 293–300 (2014).

 84 W. Zhang, S. Zhu, Y. Li, and F. Wang, "Photocatalytic Zn-doped TiO₂ films prepared by DC reactive magnetron sputtering," Vacuum **82**, 328–335 (2008).

⁸⁵P. Pungboon Pansila, N. Witit-anun, T. Jamnongkan, and S. Chaiyakun, "Preparation of pure anatase TiO₂ thin films by DC sputtering technique: Study on the effect of oxygen partial pressure," Adv. Mater. Res. **463–464**, 1415–1419 (2012).

⁸⁶T. M. R. Viseu, B. Almeida, M. Stchakovsky, B. Drevillon, M. I. C. Ferreira, and J. B. Sousa, "Optical characterisation of anatase: A comparative study of the bulk crystal and the polycrystalline thin film," Thin Solid Films **401**(1-2), 216–224 (2001).

⁸⁷G. A. Battiston, R. Gerbasi, M. Porchia, and A. Marigo, "Influence of substrate on structural properties of TiO₂ thin films obtained via MOCVD," Thin Solid Films **239**(2), 186–191 (1994).

⁸⁸N. Rausch and E. P. Burte, "Thin TiO₂ films prepared by low pressure chemical vapor deposition," J. Electrochem. Soc. **140**, 145–149 (1993).

⁸⁹L. V. Saraf, S. I. Patil, S. B. Ogale, S. R. Sainkar, and S. T. Kshirsager, "Synthesis of nanophase TiO₂ by ion beam sputtering and cold condensation technique," Int. J. Mod. Phys. B **12**(25), 2635–2647 (1998).

 ⁹⁰G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, "PECVD of amorphous TiO₂ thin films: Effect of growth temperature and plasma gas composition," Thin Solid Films 371(1-2), 126–131 (2000).
 ⁹¹M. Janczarek and E. Kowalska, "On the origin of enhanced photocatalytic activ-

⁹¹M. Janczarek and E. Kowalska, "On the origin of enhanced photocatalytic activity of copper modified titania in the oxidative reaction systems," Catalysts 7(11), 1–26 (2017).

⁹²Y. Abdu and A. O. Musa, "Copper (I) oxide (Cu₂O) based solar cells—A review," Bayero J. Pure Appl. Sci. 2(2), 8–12 (2009).

⁹³ A. Mittiga, E. Salza, F. Sarto, M. Tucci, and R. Vasanthi, "Heterojunction solar cell with 2% efficiency based on a Cu₂O substrate," Appl. Phys. Lett. 88, 163502-1-163502-2 (2006).

⁹⁴K. H. Yoon, W. J. Choi, and D. H. Kang, "Photoelectrochemical properties of copper oxide thin films coated on an n-Si substrate," Thin Solid Films 372(1-2), 250–256 (2000).

⁹⁵J. Morales, L. Sanchez, F. Martin, J. Ramos-Barrado, and M. Sanchez, "Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells," Thin Solid Films 474(1-2), 133–140 (2005).

⁹⁶K. C. C. Kharas, "Performance, selectivity, and mechanism in Cu-ZSM-5 leanburn catalysts," Appl. Catal., B 2(2-3), 207–224 (1993).

⁹⁷R. B. Vasiliev, M. N. Rumyantseva, N. V. Yakovlev, and A. M. Gaskov, "CuO/SnO₂ thin film heterostructures as chemical sensors to H₂S," Sens. Actuators, B **50**(3), 186–193 (1998).

⁹⁸Y. Nakamura, H. Zhuang, A. Kishimoto, O. Okada, and H. Yanagida, "Enhanced CO and CO₂ gas sensitivity of the CuO/ZnO heterocontact made by quenched CuO ceramics," J. Electrochem. Soc. **145**(2), 632–638 (1998).

⁹⁹D. W. Kim, B. Park, J. H. Chung, and K. S. Hong, "Mixture behavior and microwave dielectric properties in the low-fired TiO₂-CuO system," Jpn. J. Appl. Phys., Part 1 **39**, 2696–2700 (2000).

¹⁰⁰Y. S. Chaudhary, A. Agrawal, R. Shrivastav, V. R. Satsangi, and S. Dass, "A study on the photoelectrochemical properties of copper oxide thin films," Int. J. Hydrogen Energy 29, 131–134 (2004).

¹⁰¹Y. Xu and M. A. A. Schoonen, "The absolute energy positions of conduction and valence bands of selected semiconducting minerals," Am. Mineral. 85, 543–556 (2000).

¹⁰²M. Hara, T. Kondo, M. Komoda, S. Ikeda, J. N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, "Cu₂O as a photocatalyst for overall water splitting under visible light irradiation," Chem. Commun. **3**, 357–358 (1998).

 103 K. A. Khan, "Stability of a Cu₂O photoelectrode in an electrochemical cell and the performances of the photoelectrode coated with Au and SiO thin films," Appl. Energy **65**(1-4), 59–66 (2000).

¹⁰⁴M. A. Nguyen, N. M. Bedford, Y. Ren, E. M. Zahran, R. C. Goodin, F. F. Chagani, L. G. Bachas, and M. R. Knecht, "Direct synthetic control over the size, composition, and photocatalytic activity of octahedral copper oxide materials: Correlation between surface structure and catalytic functionality," ACS Appl. Mater. Interfaces 7, 13238–13250 (2015).

¹⁰⁵H. B. Walter, "The copper oxide rectifier," Rev. Mod. Phys. 23, 203–212 (1951).

¹⁰⁶M. Ichimura and Y. Kato, "Fabrication of TiO₂/Cu₂O heterojunction solar cells by electrophoretic deposition and electrodeposition," Mater. Sci. Semicond. Process. **16**(6), 1538–1541 (2013).

¹⁰⁷N. Serin, T. Serin, S. Horzum, and Y. Celik, "Annealing effects on the properties of copper oxide thin films prepared by chemical deposition," Semicond. Sci. Technol. **20**(5), 398–401 (2005). 108 X. L. Deng, C. G. Wang, M. H. Shao, X. J. Xu, and J. Z. Huang, "Low-temperature solution synthesis of CuO/Cu₂O nanostructures for enhanced photocatalytic activity with added H₂O₂: Synergistic effect and mechanism insight," RSC Adv. 7, 4329–4338 (2017).

¹⁰⁹ F. P. Koffyberg and F. A. Benko, "A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO," J. Appl. Phys. 53, 1173–1177 (1982).

¹¹⁰E. Fortin and F. L. Weichman, "Hall effect and electrical conductivity of Cu₂O monocrystals," Can. J. Phys. 44(7), 1551–1561 (2011).

¹¹¹ J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, A. Kuznetsov, Y. Liu, A. Ji, Q. Meng, and X. Du, "Probing defects in nitrogen-doped Cu₂O," Sci. Rep. 4(1), 1–6 (2014).
 ¹¹² R. Kita, K. Kawaguchi, T. Hase, T. Koga, R. Itti, and T. Morishita, "Effects of oxygen ion energy on the growth of CuO films by molecular beam epitaxy using mass-separated low-energy 0⁺ beams," J. Mater. Res. 9(5), 1280–1283 (1994).

¹¹³ K. Padrón, E. J. Juárez-Pérez, F. Forcade, R. Snyders, X. Noirfalise, C. Laza, J. Jiménez, and E. Vigil, "Nanostructured CuO films deposited on fluorine doped tin oxide conducting glass with a facile technology," Thin Solid Films **660**, 386–390 (2018).

¹¹⁴S. Hussain, C. Cao, W. S. Khan, G. Nabi, Z. Usman, A. Majid, T. Alharbi, Z. Ali, F. K. Butt, M. Tahir, M. Tanveer, and F. Idress, "Cu₂O/TiO₂ nanoporous thin-film heterojunctions: Fabrication and electrical characterization," Mater. Sci. Semicond. Process. **25**, 181–185 (2014).

¹¹⁵C. Y. Chiang, M. H. Chang, H. S. Liu, C. Y. Tai, and S. Ehrman, "Process intensification in the production of photocatalysts for solar hydrogen generation," Ind. Eng. Chem. Res. **51**(14), 5207–5215 (2012).

¹¹⁶W. Y. Ching, Y. N. Xu, and K. W. Wong, "Ground-state and optical properties of Cu₂O and CuO crystals," Phys. Rev. B **40**, 7684–7695 (1989).

¹¹⁷Y. Akaltun, "Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction," Thin Solid Films **594**(Part A), 30–34 (2015).

¹¹⁸G. Xosrovashvilia and N. E. Gorji, "Numerical analysis of TiO₂/Cu₂ZnSnS₄ nanostructured PV using SCAPS-1D," J. Mod. Opt. **60**(11), 936–940 (2013).

¹¹⁹H. Yu, J. Yu, S. Liu, and S. Mann, "Template-free hydrothermal synthesis of CuO/Cu₂O composite hollow microspheres," Chem. Mater. **19**(17), 4327–4334 (2007).

 120 K. Nakaoka, J. Ueyama, K. Ogura, "Photoelectrochemical behavior of electrodeposited CuO and Cu₂O thin films on conducting substrates," J. Electrochem. Soc. **151**(10), C661–C665 (2004).

¹²¹T. V. Pham, M. Rao, P. Andreasson, Y. Peng, J. Wang, and K. Jinesh, "Photocarriergeneration in Cu_xO thin films deposited by radio frequency sputtering," Appl. Phys. Lett. **102**(3), 032101 (2013).

¹²²K. Mageshwari and R. Sathyamoorthy, "Physical properties of nanocrystalline CuO thin films prepared by the SILAR method," Mater. Sci. Semicond. Process. **16**, 337–343 (2013).

¹²³F. Chaffar Akkari, M. Kanzari, and B. Rezig, "Preparation and characterization of obliquely deposited copper oxide thin films," Eur. Phys. J.: Appl. Phys. 40, 49–54 (2007).

¹²⁴P. Markworth, X. Liu, J. Dai, W. Fan, T. Marks, and R. Chang, "Coherent island formation of Cu₂O films grown by chemical vapor deposition on MgO (110)," J. Mater. Res. **16**, 2408–2414 (2001).

¹²⁵A. Chen, H. Long, X. Li, Y. Li, G. Yang, and P. Lu, "Controlled growth and characteristics of single-phase Cu₂O and CuO films by pulsed laser deposition," Vacuum **83**, 927–930 (2009).

¹²⁶S. C. Ray, "Preparation of copper oxide thin film by the sol–gel-like dip technique and study of their structural and optical properties," Sol. Energy Mater. Sol. Cells **68**, 307–312 (2001).

 127 F. Forcade, R. Snyders, B. González, X. Noirfalise, and E. Vigil, "Size control of CuO nanocrystals grown within TiO₂ mesopores with a simple technique," Ceram. Int. 44, 16058–16061 (2018).

 128 A. R. Zainun, S. Tomoya, U. M. Noor, M. Rusop, and I. Masaya, "New approach for generating Cu₂O/TiO₂ composite films for solar cell applications," Mater. Lett. **66**, 254–256 (2012).

¹²⁹D. Barreca, G. Carraro, V. Gombac, A. Gasparotto, C. Maccato, P. Fornasiero, and E. Tondello, "Supported metal oxide nanosystems for hydrogen photogeneration: Quo Vadis?," Adv. Funct. Mater. **21**, 2611–2623 (2011).

REVIEW

130C. Anastasescu, N. Spataru, D. Culita, I. Atkinson, T. Spataru, V. Bratan, C. Munteanu, M. Anastasescu, C. Negrila, and I. Balint, "Chemically assembled light harvesting CuO_x-TiO₂ p-n heterostructures," Chem. Eng. J. 281, 303-311 (2015).

131 M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO₂ for hydrogen production," Renewable Sustainable Energy Rev. 11, 401–425 (2007). ¹³²Z. Wang, Y. Liu, D. J. Maritin, W. Wang, J. Tang, and W. Huang, Phys. Chem.

Chem. Phys. 15, 14956-14960 (2013).

133 L. Zhang, J. Li, Z. Chen, Y. Tang, and Y. Yu, "Preparation of Fenton reagent with H2O2 generated by solar light-illuminated nano-Cu2O/MWNTs composites," Appl. Catal., A 299, 292-297 (2006).

134S. Xu, J. Ng, X. Zhang, H. Bai, and D. D. Sun, "Fabrication and comparison of highly efficient Cu incorporated TiO2 photocatalyst for hydrogen generation from water," Int. J. Hydrogen Energy 35(11), 5254-5261 (2010).

135 H. J. Choi and M. Kang, "Hydrogen production from methanol/water decomposition in a liquid photosystem using the anatase structure of Cu loaded TiO2," Int. J. Hydrogen Energy 32(16), 3841-3848 (2007).

136 J. Yu, Y. Hai, and M. Jaroniec, "Photocatalytic hydrogen production over CuOmodified titania," J. Colloid Interface Sci. 357, 223-228 (2011).

137 W. T. Chen, V. Jovic, D. Sun-Waterhouse, H. Idriss, and G. I. N. Waterhouse, "The role of CuO in promoting photocatalytic hydrogen production over TiO2," Int. J. Hydrogen Energy 38(35), 15036-15048 (2013).

138 Z. Jin, X. Zhang, Y. Li, S. Li, and G. Lu, "5.1%, apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation," Catal. Commun. 8, 1267-1273 (2007).

¹³⁹A. L. Luna, M. A. Valenzuela, C. Colbeau-Justin, P. Vázquez, J. L. Rodriguez, J. R. Avendaño, S. Alfaro, S. Tirado, A. Garduño, and J. M. De la Rosa, "Photocatalytic degradation of gallic acid over CuO-TiO2 composites under UV/Vis LEDs irradiation," Appl. Catal., A 521, 140-148 (2016).

140S. Qin, F. Xin, Y. Liu, X. Yin, and W. Ma, "Photocatalytic reduction of CO2 in methanol to methyl formate over CuO-TiO2 composite catalysts," J. Colloid Interface Sci. 356(1), 257–261 (2011).

141 S. Slamet, H. W. Nasution, E. Purnama, S. Kosela, and J. Gunlazuardi, "Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method," Catal. Commun. 6(5), 313-319 (2005).

¹⁴²I. Ganesh, P. P. Kumar, I. Annapoorna, J. M. Sumliner, M. Ramakrishna, N. Y. Hebalkar, G. Padmanabham, and G. Sundararajan, "Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications," Appl. Surf. Sci. 293, 229-247 (2014).

143 K. Chiang, R. Amal, and T. Tran, "Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide," Adv. Environ. Res. 6(4), 471-485 (2002).

¹⁴⁴C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, and V. Anandi, "Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light," J. Colloid Interface Sci. 352, 68-74 (2010).

¹⁴⁵I. B. Ditta, A. Steele, C. Liptrot, J. Tobin, H. Tyler, H. M. Yates, D. W. Sheel, and H. A. Foster, "Photocatalytic antimicrobial activity of thin surface films of TiO₂, CuO and TiO₂/CuO dual layers on Escherichia coli and bacteriophage T4," Appl. Microbiol. Biotechnol. 79, 127-133 (2008).

¹⁴⁶X. Liu, G. Zhu, G. Wang, X. Wang, X. Yuan, T. Lin, and F. Huang, "Progress in black titania: A New material for advanced photocatalysis," Adv. Energy Mater. **6**(17), 1600452 (2016).

 $^{147}\ensuremath{\text{Y}}.$ Bessekhouad, D. Robert, and J. V. Weber, "Bi_2S_3/TiO_2 and CdS/TiO_2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant," J. Photochem. Photobiol., A 163, 569-580 (2004).

148 N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, and H. Hidaka, "Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: Chemical evidence for electron and hole transfer between coupled semiconductors," J. Photochem. Photobiol., A 85, 247-255 (1995).

¹⁴⁹L. Huang, F. Peng, H. Wang, H. Yu, and Z. Li, "Preparation and characterization of Cu₂O/TiO₂ nano-nanoheterostructure photocatalysts," Catal. Commun. 10, 1839-1843 (2009).

¹⁵⁰V. M. Nikale, S. S. Shinde, A. R. Babar, C. H. Bhosale, and K. Y. Rajpure, "The n-CdIn₂Se₄/p-CdTe heterojunction solar cells," Sol. Energy 85(7), 1336-1342 (2011).

151 G. Wisz, P. Sawicka-Chudy, R. Yavorskyi, P. Poteraa, M. Bestera, and Ł. Głowa, "TiO2/Cu2O heterojunctions for photovoltaic cells application produced by reactive magnetron sputtering," Mater. Today Proc. (published online 2019).

152 K. Y. Song, Y. T. Kwon, G. J. Choi, and W. I. Lee, "Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper," Bull. Korean Chem. Soc. 20, 957-960 (1999).

153 L. Y. Hu, Y. M. Zhang, S. M. Zhang, and B. X. Li, "A transparent TiO2-C @ TiO2-graphene freestanding film with enhanced visible light photocatalysis," RSC Adv. 6, 43098-43103 (2016).

¹⁵⁴J. Arana, A. P. Alonso, J. M. D. Rodriguez, J. A. H. Melian, O. G. Diaz, and J. P. Pena, "Comparative study of MTBE photocatalytic degradation with TiO₂ and Cu-TiO2," Appl. Catal., B 78, 355-363 (2008).

155Q. Shi, G. Ping, X. Wang, H. Xu, J. Li, J. Cui, H. Abroshan, H. Dinga, and G. Li, "CuO/TiO2 heterojunction composites: An efficient photocatalyst for selective oxidation of methanol to methyl formate," J. Mater. Chem. A 7, 2253-2260 (2019).

¹⁵⁶H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D. A. Tryk, T. Yokoyama, and K. Hashimoto, "Visible light-sensitive Cu(II)-grafted TiO₂ photocatalysts: Activities and x-ray absorption fine structure analyses," J. Phys. Chem. C 113, 10761-10766 (2009).

157 G. Li, N. M. Dimitrijevic, L. Chen, T. Rajh, and K. A. Gray, "Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites," J. Phys. Chem. C 112, 19040-19044 (2008).

¹⁵⁸X. Xu, Z. Gao, Z. Cui, Y. Liang, Z. Li, S. Zhu, X. Yang, and J. Ma, "Synthesis of Cu₂O octadecahedron/TiO₂ quantum dot heterojunctions with high visible light photocatalytic activity and high stability," ACS Appl. Mater. Interfaces 8(1), 91-101 (2016).

159W. R. Siah, H. O. Lintang, M. Shamsuddin, H. Yoshida, and L. Tuliati, "Masking effect of copper oxides photodeposited on titanium dioxide: Exploring UV, visible, and solar light activity," Catal. Sci. Technol. 6, 5079-5087 (2016).

¹⁶⁰M. Liu, X. Qiu, M. Miyauchi, and K. Hashimoto, "Cu(11) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: An efficient visible light photocatalyst," Chem. Mater. 23, 5282-5286 (2011).

¹⁶¹S. Chu, X. M. Zheng, F. Kong, G. H. Wu, L. L. Luo, Y. Guo, H. L. Liu, Y. Wang, H. X. Yu, and Z. G. Zou, "Architecture of Cu2O@TiO2 core-shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation," Mater. Chem. Phys. 129, 1184-1188 (2011).

162 L. M. Liu, W. Y. Yang, Q. Li, S. A. Gao, and J. K. Shang, "Synthesis of Cu₂O nanospheres decorated with TiO₂ nanoislands, their enhanced photoactivity and stability under visible light illumination, and their postillumination catalytic memory," ACS Appl. Mater. Interfaces 6, 5629-5639 (2014).

163 J. Li, L. Liu, Y. Yu, Y. Tang, H. Li, and F. Du, "Preparation of highly photocatalytic active nano-size TiO2-Cu2O particle composites with a novel electrochemical method," Electrochem. Commun. 6, 940-943 (2004).

¹⁶⁴N. Helaïli, Y. Bessekhouad, A. Bouguelia, and M. Trari, "Visible light degradation of Orange II using xCuyOz/TiO2 heterojunctions," J. Hazard. Mater. 168(1), 484-492 (2009).

165 X. Su, J. Zhao, Y. Li, Y. Zhu, X. Ma, F. Sun, and Z. Wang, "Solution synthesis of Cu₂O/TiO₂ core-shell nanocomposites," Colloids Surf., A 349, 151-155 (2009).

¹⁶⁶J. Zhang, H. Zhu, S. Zheng, F. Pan, and T. Wang, "TiO₂ Film/Cu₂O microgrid heterojunction with photocatalytic activity under solar light irradiation," Appl. Mater. Interfaces 1, 2111-2114 (2009).

167 L. B. Xiong, F. Yang, L. L. Yan, N. N. Yan, X. Yang, M. Q. Qiu, and Y. Yu, "Bifunctional photocatalysis of TiO₂/Cu₂O composite under visible light: Ti³⁺ in organic pollutant degradation and water splitting," J. Phys. Chem. Solids 72(9), 1104-1109 (2011).

¹⁶⁸M. Wang, L. Sun, J. Cai, J. K. Xie, and C. Lin, "p-n Heterojunction photoelectrodes composed of Cu2O loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities," Energy Environ. Sci. **6**, 1211–1220 (2013).

¹⁶⁹M. Rokhmat, E. Wibowo, Sutisna, E. Yuliza, Khairurrijal, and M. Abdullah, "Enhancement of TiO₂ particles based-solar cells efficiency by addition of copper(II) nitrate and post-treatment with sodium hydroxyde," Adv. Mater. Res. **1112**, 245–250 (2015).

¹⁷⁰W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S.-H. Baeck, and E. W. McFarland,
 "A Cu₂O/TiO₂ heterojunction thin film cathode for photoelectrocatalysis," Sol.
 Energy Mater. Sol. Cells 77, 229–237 (2003).

¹⁷¹D. Li, C. Chien, S. Deora, P. Chang, E. Moulin, and J. Lu, "Prototype of a scalable core-shell Cu₂O/TiO₂ solar cell," Chem. Phys. Lett. **501**, 446–450 (2011).
 ¹⁷²Y. Hou, X. Y. Li, Q. D. Zhao, X. Quan, and G. H. Chen, "Fabrication of Cu₂O/TiO₂ nanotube heterojunction arrays and investigation of its photoelectrochemical behavior," Appl. Phys. Lett. **95**, 093108–093108-3 (2009).

¹⁷³Y. Luo, L. Wang, Y. Zou, X. Sheng, L. Chang, and D. Yang, "Electrochemically deposited Cu₂O on TiO₂ nanorod arrays for photovoltaic application," Electrochem. Solid-State Lett. **15**, H34–H36 (2012).

¹⁷⁴A. B. Suleiman, S. S. Abdullahi, C. E. Ndikilar, and S. Isiyaku, "Fabrication of ZnO/Cu₂O and TiO₂/Cu₂O heterojunction solar cell using spray pyrolysis method," Int. J. Adv. Res. 5(12), 1834–1841 (2017).

¹⁷⁵T. Minami, Y. Nishi, T. Miyata, and J.-i. Nomoto, "High-efficiency oxide solar cells with ZnO/Cu_2O heterojunction fabricated on thermally oxidized Cu_2O sheets," Appl. Phys. Express 4(6), 062301-1–062301-3 (2011).

¹⁷⁶S. Masudy-Panah, K. Radhakrishnan, H. R. Tan, R. Yi, T. I. Wong, and G. K. Dalapati, "Titanium doped cupric oxide for photovoltaic application," Sol. Energy Mater. Sol. Cells **140**, 266–274 (2015).

¹⁷⁷S. Masudy-Panah, G. K. Dalapati, K. Radhakrishnan, A. Kumar, H. R. Tan, E. N. Kumar, C. Vijila, C. C. Tan, and D. Zhi Chi, "p-CuO/n-Si heterojunction solar cells with high open circuit voltage and photocurrent through interfacial engineering," Prog. Photovoltaics: Res. Appl. **23**(5), 637–645 (2015).

¹⁷⁸S. Masudy-Panah, R. S. Moakhar, C. S. Chua, A. Kushwaha, T. I. Wong, and G. K. Dalapati, "Rapid thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO photocathode," RSC Adv. **6**, 29383–29390 (2016).

¹⁷⁹K. P. Musselman, A. Marin, L. Schmidt-Mende, and J. L. MacManus-Driscoll, "Incompatible length scales in nanostructured Cu₂O solar cells," Adv. Funct. Mater. **22**, 2202–2208 (2012).