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ABSTRACT
Introduction. Estrogen receptors (ER) are members of nuclear receptors that act in the ER signaling pathway regulating the 
pathophysiology of hormone-responsive target cells including breast tissue. 
Aim. This detailled review literature was written on the pathophysiology of ER signaling as well as the effect altered ERα and 
associated pathway derangement in the oncogenesis of breast cancer.
Material and methods. This review was performed according to systematic literature search of three major bibliographic da-
tabases (Scopus, PubMed, and Cochran).
Analysis of the literature. In this pathway, estrogen receptor alpha (ERα) is a key estradiol-17β (E2) induced transcription factor 
that has been implicated in the initiation and development of the major fraction of breast cancers. Hence understanding the 
ERα-mediated ER signaling that results in alterations from normal phenotypic features of breast tissue to the oncogenic fea-
tures of breast cancer is important. The oncogenic effect of ERα in ER signaling is driven by combinations of molecular assets 
within the cancer cells. Normally, the transcriptional activity of ERα is controlled by tight regulation of its protein level inside the 
cells. Altered stability and activity of ERα due to its phosphorylation, ubiquitination, glycosylation, sumoylation, and acetylation 
events can trigger oncogenic ER signaling. 
Conclusion. The function and activity of ERα is also modulated by its interaction with coregulators as well as crosstalk with 
oncogenic factors from other oncogenic pathways. These all events increase the complexity of the progression of ER+ breast 
cancer and its response to endocrine therapy. 
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trogen in breast cancer 1, GSK3 ‒ glycogen synthase ki-
nase 3, HER2 ‒ human epidermal growth factor receptor 
2, IDC ‒ invasive ductal carcinoma, IHC ‒ immunohis-
tochemistry, ILC ‒ invasive lobular carcinoma, LBD ‒ li-
gand binding domain, LCIS ‒ lobular carcinoma in situ, 
MRI ‒ magnetic resonance imaging, NRF-1 ‒ nuclear re-
spiratory factor 1, NRF2 ‒ Notch, nuclear factor eryth-
roid-derived 2, PAM50 ‒ prosigna of A 50-gene qPCR 
assay, PCR ‒ polymerase chain reaction, PEST ‒ proline 
(P), glutamic acid (E), serine (S), and threonine (T) re-
gion, PI3K ‒ phosphatidylinositol 3-kinase,  PIN1 ‒ pep-
tidyl-prolyl cis-trans isomerase NIMA-interacting 1, PR 
‒ progesterone receptor, RE ‒ response element, RNA ‒ 
Ribonucleic acid, SP1 ‒  Specificity protein 1, Src ‒ tyro-
sine-protein kinase, TF ‒ transcription factor

Introduction
Cell signaling is a complex network of the communica-
tion process that cells normally use to respond to their 
microenvironment. Oncogenic signalling that drives 
oncogenesis happens when cellular signaling interac-
tions and information processing is altered.1,2 Cyto-
genetic aberrations in signaling pathways that control 
cell growth, apoptosis and cell-cycle progression are 
common hallmarks of cancer. The cancer genome at-
las (TCGA) study on the oncogenic signaling pathways 
in 33 cancer types found alteration of cell cycle, Hippo, 
Myc, Notch signalling, nuclear factor erythroid-derived 
2 (Nrf2), phosphoinositide 3-kinase (PI3K/Akt), recep-
tor tyrosine kinase (RTK-RAS) signalling, tumor growth 
factor betta (TGFβ) signaling, p53 and Wnt/β-catenin 
signalling pathways.3 On top of deranged expression of 
such potentially oncogenic factors in a given pathway, 
oncogenic signalling pathway cross-talk is also a com-
mon  phenomenon as most solid tumors often undergo 
clonal evolution on top of primary cancer initiating on-
cogenic mutation.4 The extent, mechanisms, and patters 
of co-occurrence of alterations in these pathways differ 
between individual tumors and tumor subtypes. 

ER signalling pathway is important in tissue ex-
pressing ER for the normal development of breast tis-
sue. However when this pathway is deranged, it has 
been implicated to trigger the oncogenesis of breast 
cancer.5,6 Due to the central importance of ERα in the 
pathophysiology of E2 target tissues, understanding of 
E2-ER signaling events that results in alterations from 
normal phenotypic features to the oncogenic features of 
breast cancer is important.  

So far there have been many studies on the mecha-
nisms of E2/ERα-mediated breast cancer development 
where ERα plays critical roles among which epigenetic 
regulation of ERα expression, altered ERα stability and 
identification of many of ERα coregulators and their as-
sociation with breast cancer.7-21 Moreover, the oncogenic 
event of ER+ breast cancer has been found to more com-

plex especially when pathway crosstalk happens with oth-
er oncogenic signals.22,23 This implicates that on top of the 
current ERα targeted endocrine therapy, there is a need of 
systematic analysis of oncogenic events and the resistance 
mechanisms of endocrine therapy for such major sub-
type of breast cancer. Hence, this detailled review litera-
ture was written on the pathophysiology of ER signaling 
as well as the effect altered ERα and associated pathway 
derangement in the oncogenesis of breast cancer. 

Aim
This detailled review literature was written on the patho-
physiology of ER signaling as well as the effect altered 
ERα and associated pathway derangement in the onco-
genesis of breast cancer.

Breast cancer: Overview
Breast cancer is the most common malignancy as well 
as the leading cause of cancer death in women with in-
creasing incidence rate all across the world.24,25 Accord-
ing to global cancer incidence, mortality and prevalence 
(GLOBOCAN), breast cancer accounts for 25.1% of all 
cancers with a higher incidence rate in developed coun-
tries and relative greater mortality in less developed 
countries.26

Risk factors for breast cancer include being female, 
menarche at early ages and menopause in old ages, the 
use of preventive pregnancy hormones, opting not to 
have children, obesity after menopause, use hormones 
to prevent pregnancy, physical inactivity and alcohol 
consumption. In contrast, having children and breast-
feeding are preventive factors.27

Formation of a lump in the breast tissue is the most 
common symptom of breast cancer, but symptoms vary 
in many cases. The other common symptoms of breast 
cancer include irregular enlargement of the breast, ab-
normal or bloody discharge from the nipple, dimpling 
and rash on the nipple. It has been reported that only 
one in 10 lumps is diagnosed as malignant.28 

Primary screening for diagnosis of breast cancer 
commonly includes clinical examination followed by 
mammography which is specialized medical imaging 
system that uses a low-dose x-ray to detect breast can-
cer. Adjunctive screening for breast cancer uses breast ul-
trasonography and magnetic resonance imaging (MRI) 
which uses radio waves & magnetic fields to produce de-
tailed images of breast tissue.29 A biopsy of a small sam-
ple of breast tissue or fluid taken from the suspicious area 
is also analyzed to know the type of breast cancer cells, 
the grade of cancer as well as the hormone receptor status 
that can influence the patient treatment options.

Subtypes of breast cancer
The choice and improvement of best diagnosis, prog-
nosis and treatment of breast cancer rely on the knowl-



291Pathophysiological roles of ERα in the ER signaling mediated oncogenesis of breast cancer

edge of the clinical heterogeneity, genetic and intrinsic 
heterogeneity of breast cancer. In this regard breast can-
cer is classified into multiple subtypes based on the fol-
lowing three major subtyping features. These subtyping 
features are defined by histological analysis, molecular 
characterization and functional subtyping of the breast 
cancers.30 

Histological subtyping classifies breast cancers 
based on their histological features and growth patterns. 
Breast cancer can be broadly categorized into pre-in-
vasive (25%) or invasive carcinoma (75%).28,29 Pre-in-
vasive carcinoma can then be sub-divided into ductal 
carcinoma in situ (DCIS) and lobular carcinoma in situ 
(LCIS). The invasive carcinomas are more heteroge-
neous in that they can be categorized as invasive duc-
tal carcinoma (IDC) which is the most common one, 
invasive lobular carcinoma (ILC), tubular carcinoma, 
infiltrating ductal carcinoma, mucinous, and medul-
lary carcinoma.29-31 The traditionally used histological 
staining like fluorescence in situ hybridization (FISH) 
and immunohistochemistry (IHC) allow us to classify 
the clinical specimen of breast cancer into ER+, proges-
terone receptor (PR+), and/or containing an amplifica-
tion of the human epidermal growth factor receptor 2 
(HER2).32 But it does not segregate the luminal A and B 
subtype of ER+ cancer that may have a distinct clinical 
response to the given therapy.33,34 The emerging needs 
for personalized therapy and prognostics also require 
more advanced breast tumor classification with greater 
diagnostic precision.

Molecular subtyping is used as a compliment to pri-
mary screening and histological subtyping, as a prog-
nostic indicator and to inform the choice of therapy. 
Molecular subtyping of breast tumors means catego-
rizing tumors according to microarray analysis of their 
gene expression patterns. The two genomic tests are 
bluePrint/mammaPrint and the prosigna breast cancer 
prognostic gene signature assay (PAM50 assay). Based 
on the expression analysis of ER, PR, HER2, Claudin, 
epidermal growth factor receptor (EGFR), Keratin 5/14, 
E-cadherin, Vimentin and its major combinations, 
breast cancers are grouped into four major molecular 
subtypes. These are Luminal A (ER/RP+ HER2- and low 
Ki-67 expression), Luminal B (ER/RP+ and HER2+ or 
HER2- but high Ki-67 expression), HER2-enriched and 
Basal subtype (triple negative). In addition to these four 
subtypes, a normal-like, Basal-like and Claudin-low 
subtype have also been identified.33-35 

The functional subtyping of breast cancer is an ex-
tension of molecular subtyping. It is based on the newly 
emerging hypothetical concept that the functional out-
come of the tumor may depend on the perigenetic alter-
ations present in the tumor-initiating mammary stem 
cell or progenitor cell being transformed by various on-
cogenes.36,37 Molecular features associated with a biolog-

ical function or clinical outcome of particular subtypes 
within a given tumor may lead to the heterogeneity of 
breast carcinoma.36,38  Hence functional genetic screen-
ing is needed to identify genetic signatures that play 
a critical role for growth and drug response of specif-
ic subtype of breast cancer. For example, the patterns of 
sensitivities to the targetable oncogenes such as PTEN 
mutation or functional genetic screening of a given ki-
nase inhibitors helps to define the functional viability 
profiles of breast cancer.39

Treatment strategies and endocrine resistance
The treatment plan for breast cancer depends on the bi-
ology and behavior of cancer and the status of the pa-
tient. As a result of this, treatment recommendations 
and options are very personalized and many factors are 
often taken in to account including, the tumor’s subtype, 
stage of the tumor, the presence of an inherited muta-
tion and genomic markers, the patient’s general health 
status, age, menopausal status and patient preferences. 

The common breast cancer treatment includes sur-
gery, hormonal therapy, radiation therapy, chemo-
therapy and targeted therapy. ER and PR are standard 
biomarkers used in clinical practice to characterize 
breast cancers. ERα+ breast cancers can be effective-
ly targeted endocrine therapy which includes selective 
ER modulators such as Tamoxifen, selective ER down-
regulators such as Fulvestrant and Aromatase inhibi-
tors (AIs). About 30% of cases of ERα+ breast cancers 
treated with Tamoxifen develop resistance.40 In some 
patients, this de novo tamoxifen resistance could be cul-
minated by treatment with Fulvestrant and AIs indicat-
ing that hormonal-based therapy reduces the recurrence 
risks and confers survival benefit for ER+ breast can-
cer.41-43 However, the risk of disease recurrence albeit 5 
years after adjuvant-based tamoxifen treatment is still 
substantial.44,45 Activation of an alternative signalling 
pathway during endocrine therapy remains a challenge 
as it results in the growth of treatment resistance clones, 
recurrence of cancer and treatment failure.

So far several acquired endocrine resistance mech-
anisms have been proposed. Upregulation of the ERa 
co-regulator Amplified in breast cancer 1 (AIB1) po-
tentiates tamoxifen agonistic effects, especially in the 
presence of HER2 expression.46 Phosphatidylinosi-
tol 3-kinase (PI3K) and mitogen-activated protein ki-
nases (MAPK) pathways activation by aberrant growth 
factor signaling have also been implicated in resistance 
to tamoxifen, as well as AIs.47-50 Aberrant expression of 
genes such as c-Myc, BCL2 associated agonist of cell 
death (BAD) and apoptosis regulator B-cell lymphoma 
2 (BCL2) and breast cancer anti-estrogen resistance 3 
(BCAR3) have been reported to allow cancer survival 
and proliferation under endocrine therapy.51,52 Efficacy 
of tamoxifen and AIs is also influenced by functional 
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polymorphisms, with cytochrome p450 family 2 sub-
family D member 6 (CYP2D6) and cytochrome p450 
family 19 (CYP19), being the most widely studied.53,54 

Taking the central role of ERα in the tumorigenesis 
and drug response of breast cancer, understanding the 
regulation of cellular status of ERα is by far important. 
Altered ERα expression or mutations which give rise 
to an active ligand-independent form or epigenetic si-
lencing also contribute to endocrine resistance.8-12 One 
of the identified modifications which have been report-
ed to induce resistance to tamoxifen is serine-305 phos-
phorylation at the hinge region of ERα.55 ER+ tumours 
generally respond less well to chemotherapy.56,57 It was 
observed that if ERa is reconstituted back to ER-nega-
tive cells it became less responsive to chemotherapeutic 
agents, raising the possibility that ERa modulates che-
mo-response.58,59 Since the underlying mechanisms are 
barely known and likely complex, tamoxifen co-admin-
istration with chemotherapy has not proven effective 
choice to treat cases of primary breast cancer. 

Estrogen Receptor Signaling in Normal Human 
Physiology
Estrogen receptors are members of a large superfami-
ly of nuclear receptors that act as transcription factors. 
The activity of estrogen receptors is modulated by steroid 
hormones; hydrophobic hormones generally synthesized 
from cholesterol in the gonads and adrenal glands. The 
best-characterized estrogen receptors are those responsi-
ble for membrane-initiated estradiol signaling. These in-
clude the classical ERα and Estrogen Receptor beta (ERβ) 
isoforms. ERα and ERβ are encoded by separate genes 
and each has different and specific roles in mammals.60-63 

Estrogens are one class of steroid hormones that in-
clude estriol, estradiol and estrone. E2, the most potent 
circulating hormone involved in the detailed array of 
important physiology. E2 regulates development of re-
productive organs, regulation of musculoskeletal, car-
diovascular as well as immune system, and homeostasis 
of the central nervous system.5,6 ER signaling in nor-
mal breast tissue is activated by E2 and it modulates the 
normal development of the mammary gland. The activ-
ity and expression of ERα are tightly controlled at tran-
scriptional and post-translational levels.64

E2 can enter cells and interacts with the ER in two 
ways. Being lipophilic, E2 passes through the plasma 
membrane of any cell freely and then interact with cyto-
plasmic ER. E2 can also enter the cell through ER-me-
diated membrane signaling. Starting from such slightly 
distinct intracellular localization paths, E2 triggers three 
major ER signaling events that can follow five intercon-
nected signalling pathways  (Figure 1). The three signal-
ing events are ER-mediated membrane signaling event, 
ER-mediated mitochondrial events and ER-mediated 
nuclear signaling events.

The plasma membrane-initiated signaling is a rap-
id and transcriptional-independent E2 signaling event. 
Following binding of E2 to ER, the membrane-integrat-
ed and palmitoylated ER monomer dimerizes as shown 
on the second (II) signalling pathway in Figure 1 be-
low. Once dimerized, it detaches from the membrane 
and localizes to the nucleus where it induces nuclear ER 
signaling. The E2 induced plasma membrane-associat-
ed ER dimerization may also allow the recruitment of G 
protein that can collaterally activate kinases allowing the 
activation of the tyrosine-protein kinase (Src) and RTK 
oncogenic signaling pathway.65-68 ERα palmitoylation 
was found to be important in this signaling cascade, as 
mutation of Cystine-451 residue to Alanine within the 
ligand binding domain (LBD) prevents the trafficking of 
the receptor to the membrane thereby abrogating nucle-
ar ER-mediated transcriptional events. Introducing this 
mutation into mice resulted in infertility, abnormal reg-
ulation of the pituitary hormone, abnormal ovaries, ar-
rested the development of mammary gland and altered 
vasculatures.69,70 

The mitochondria are an important target of 
ER-mediated E2 action in which both ERα and ERβ can 
localize to inhibit early stage of apoptosis induced by 
several stimuli.71-74 The E2-ER complex alters mitochon-
drial function by directly acting on mitochondrial de-
oxyribose nucleic acid (DNA) to induce mitochondrial 
gene expression; including expression of mitochondri-
al adenosine triphosphate (ATP) synthase subunits and 
manganese superoxide dismutase.75,76 Here the superox-
ide generated by E2 induced mitochondrial biogenesis 
is counterbalanced by manganese superoxide dismutase 
encoded from mitochondrial DNA to prevent apop-
tosis (Figure 1: signaling pathway V). The E2-induced 
nuclear receptor signalling can also indirectly act on 
mitochondria by activating the expression of Nuclear 
respiratory factor 1 (NRF-1) that can enter into the mi-
tochondrial scaffold to regulate mitochondrial function 
and maintain cellular integrity.71,77,78   

Nuclear ER-mediated signaling is the major effector 
arm of the ER signaling pathway regulating the patho-
physiology of hormone-responsive target cells. ER has 
a nuclear localization signal that interacts with impor-
tin, a nuclear membrane component, thus maintain-
ing ER’s nuclear localization.79 Once E2-ER complex 
moves to the nucleus, it follows two well-known sepa-
rate modes of action. These are the E2 response element 
(ERE)-dependent (sometimes called the genomic) sig-
naling pathway and ERE-independent or non-genomic 
signaling pathway.

In the ERE-dependent pathway, the E2-ER com-
plex directly binds to the consensus motif sequence 
(5’-GGTCAnnnTGACC-3’) often found on the pro-
moter of ER target genes to regulate its expression (Fig-
ure 1: signaling pathway I and II). The E2 liganded ERα 
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binds to ERE through the sequence specificity P-box 
residue (Glutamine-203, Glycine-204 and Alanine-207) 
and conserved Arginine-211 residue recruiting co-reg-
ulators, chromatin modifiers as well as the transcription 
initiation complex.80-83 Briefly, the E2-ER complex first 
recruits the p160 co-activator family members (Sirtuin 
1-3, AIB1, Nuclear receptor coactivator 2) which have 
histone acetyltransferase activity to open-up the chro-
matin. This phenomenon allows the recruitment of the 
p300 co-integrator that further relaxes the chromatin. 
p300 activates the subsequent binding of RNA poly-
merase II on to the transcription initiation sites to start 
transcription of the target genes.84-86 

Fig. 1. Estrogen Receptor Signalling Pathways: I) In ER-
dependent nuclear signalling, E2 can freely inter the 
cell, bind and dimerize ERα. Once ERα dimer localizes 
to nucleus it may bind directly to an ERE or binds to 
another response element (RE) through transcription 
factors (TF). II) ER-mediated membrane signaling pathway. 
Here receptor associated ER monomer binds to E2 and 
dimerizes. III) E3-independent signalling pathway/growth 
factor-mediated ER signalling. Here MAPK/Ras-mediates 
the cascade or MAPK phosphorylates ERα. Phosphorylated 
ERα dimerize and localizes to the nucleus where it recruits 
co-activators and bind to ERE. IV) ER-mediated Src, PI3K/
AKT signalling crosstalk which involves other TF (AP-1 and 
SP-1). V) ER-mediated mitochondrial signalling events also 
happen when ER localizes and binds to mitochondrial DNA 
(modified)87,88

The ERE-independent pathway involves the mecha-
nism whereby E2 liganded and/or antagonist/agonist li-
ganded ER dimer interacts with co-regulatory proteins 
or transcription factors such as specificity protein 1(SP-
1) and activator protein 1 (AP-1) that have their own 
cognate response elements  to modulate the expression 
of genes involved in cell proliferation, differentiation or 

cell death.89-96 The critical involvement of co-regulators 
accordingly makes a good platform to diversify the E2 
responsive genes (Figure 1: signalling pathway IV).  The 
involvement of co-regulators in this pathway diversifies 
the chromatin binding coverage for the genes respon-
sive to ER signalling pathway.

To further understand the role of the ERE-indepen-
dent pathway, the P-box residues (Glycine-204, Gluta-
mine-203 and Alanine-207) found on the DNA binding 
domain of ERα were mutated in human cell lines and in 
mice thereby ERE independent E2 mediated signalling 
pathway model were developed 97. Later-on to reduce 
the effect of such mutation on the co-regulator bind-
ing, Arginine-211 was mutated to Glutamine-211 along 
with ER203/204 thereby created ERE-binding null ER. 
These mutations were sufficient to abrogate the cardi-
nal ERE response while still allowing activation of sub-
sets of ERE-independent E2 responsive genes. The in 
vivo mouse knock-in model of these mutants showed 
the phenotype of hypoplastic uteri, hemorrhagic ova-
ry, reduced mammary gland development which are 
phenotypic features of ERα-knockout mouse.98,99 Fur-
thermore, ERE oligonucleotide used as decoy DNA 
transfected into ER+ breast cancer cells were shown to 
halt E2 induced growth.100 These examples indicate that 
the ERE-dependent signalling pathway accounts for the 
majority of physiologically relevant E2-ER signalling.

Structure and function of ER
Estrogen receptors (ERα and ERβ) have some basic 
structural features that underlie the similarity of their 
function. Linking the ER structural topology to its func-
tion, there are five segments of ER functional domains 
encoded by 8 exons. ERα is encoded on chromosome 6 
and is 595 amino acid residues in length or 66-kD when 
translated. In comparison, ERβ is smaller in size, en-
coded from chromosome 14 and it is 530 amino acid in 
length, or 60-kD when translated. The homology of the 
two ER domains varies across the domain with the high-
est similarity (97% homology) in C segment of DNA 
binding domain (DBD) (Figure 2).

The amino-terminus A/B domain of ER is high-
ly disordered AF-1 region but co-operatively assemble 
to keep the structural integrity of activation function 2 
(AF-2) region of LBD in accordance with the signaling 
milieu.103-107 The A/B domain of ER can display a variety 
of dynamic conformations that change with modifica-
tions such as phosphorylation or upon interaction with 
another protein partner.108 Compared to ERα, ER-β has 
a truncated AF-1 region, and thus it’s interaction with 
other protein partner is impaired.109-112

In ERE-dependent ER signaling, ER bind to chro-
matin through the C domain called DBD. This domain 
is highly conserved between the two estrogen recep-
tors and it dimerizes and assembles itself on the DNA 
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double helix forming a zinc finger module, the P-box 
and D-box determining half-site spacing and DNA-se-
quence binding specificity.80-82 It has been also reported 
that this domain is linked to the hinge region (D do-
main) containing nuclear localization signal and allow 
the binding of associated transcription factor during 
modulation of ERE-independent signaling pathway ac-
tivation 113. The D segment of ER also contains multiple 
ubiquitination residues that undergo posttranslational 
modification to determine the half-life of ERα.114 

Fig. 2. Human ERα and ERβ Domain Structure. A) 
Schematic presentation of ERα and ERβ domains with 
corresponding percent homology. Both ERα and ERβ genes 
are expressed from 8 exons and have five interconnected 
segments of functional domains. The percent homology 
between the two ER for each segment is indicated. B) ERα 
domain arrangement and conformation change during E2 
induced dimerization (adapted)101,102 

The LBD of ERα is predominantly involved in the 
dimerization of ERα following the formation of li-
gand binding scaffold; a very important segment for li-
gand-dependent activation of ER signalling.115 E2 binds 
to this AF-2 domain thereby recruit co-activators.116-118 
The conformational status of the dynamically mobile 
H12 helicase motif in the LBD determines the choice of 
agonist or antagonists as well as the co-activator bind-
ing events. Thus LBD has been chosen as the best pock-
et-docking site for drugs.117,119

Roles of ERα in ER Signaling in Breast Cancer
The oncogenic effects of ER signalling are driven by 
combinations of molecular assets within the cancer 
cells. E2 induced ER signaling has been also implicat-
ed in the initiation and development of breast cancer.5,6 
Functional study in this pathway also showed that im-
pairing estrogen signalling by removing the ERα causes 

the defects on the reproductive system and brain in both 
female and male mice, whereas prolonged exposure of 
exogenous E2 by using contraceptives or other hormone 
therapy has been shown to promote the incidence and 
progression of many hormone-dependent; breast, ovary, 
and prostate cancers.120-124 

Normally, the transcriptional activity of ERα is con-
trolled by tightly regulating its protein level inside the 
cells. In the oncogenesis of breast cancer, E2 influences 
uncontrolled cell proliferation or promote ER indepen-
dent signalling to sidestep the physiologically controlled 
ER signalling.125,126 Few reports also showed that breast 
cancers express a protein that stabilizes ERα to promote 
proliferation.127,128 Thus understanding the cellular and 
molecular events in breast cancer that regulate ERα sta-
bility and function is very important. 

Altered ERα stability triggers oncogenic ER signaling
Given that the majority of breast cancers are ERα+ and 
the cellular level ERα is a critical determinant both as 
a diagnostic marker as well as a targetable molecule, un-
derstanding the mechanisms that underlie the tight reg-
ulation of ERα will greatly impact breast cancer therapy. 
It has been reports that ERα undergoes an intricate in-
terplay of post-translational modifications such as phos-
phorylation, ubiquitination, glycosylation, sumoylation, 
and acetylation events that can modulate un-liganded or 
liganded ERα stability as well as function thereby trig-
gers oncogenic ER signaling in breast cancer.13-19

The post-translational modification of ER that reg-
ulate ER stability in cancer is often mediated by several 
proteins that interact and protect ER from degradation 
by the ubiquitin-proteasome system.129 Through diverse 
mechanisms, these proteins prevent polyubiquitination 
and degradation of ER, leading to an increase in ER 
protein levels; consequently, estrogen signaling and its 
physiologic effects are enhanced in breast cancer cells. 
Thus, increased protein stability seems to be one of the 
main reasons that ER is upregulated in breast cancer. 
For instance there are coactivators that stabilize the lev-
el ER protein, the kinases like GSK3, LMTK3, and ABL 
interact with and stabilize ER, non-nuclear mechanisms 
for maintaining ER stability and involvement of other 
proteins  like MUC1, PIN1, GSK3, LMTK3, RNF31, RB, 
and ABL have been reported to be involved in ER sta-
bility in breast cancer.127-138 More recently TRIM56 has 
been identified to be a novel regulatory factor prolongs 
ERα protein stability in breast cancer, through targeting 
ER alpha K63-linked ubiquitination.139 Some of the de-
picted mechanism how such post-translatioal modifica-
tion affect ER stability is diacussed below. 

ERα Ubiquitination
The cellular level of ERα is primarily regulated by ubiq-
uitination, especially when ERα is transcriptionally ac-
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tive.  Reports have shown some proteins dynamically 
interact with and prevent degradation of ERα by the 
ubiquitin-proteasome system.114,127,128,134 The oncogen-
esis of breast cancer could emanate evolving the mo-
lecular mechanisms whereby cancer cell bypasses this 
polyubiquitination and degradation of ERα, thus in-
creases its stability.

An oncogenic glycoprotein Mucin-1(MUC1) has 
been reported to binds directly to the ERα DBD and sta-
bilize ERα by blocking its ubiquitination and degrada-
tion.137 Another protein called Peptidyl-prolyl cis-trans 
isomerase NIMA-interacting 1 (PIN1) interacts with 
ERα to prevent the binding of E3 ligase, E6AP, to ERα 
thereby prevents the ubiquitination and degradation of 
ERα.138 Recently, a Ring-between-Ring E3 ligase family 
protein; Ring Finger Protein 31 has been found to asso-
ciate with ERα and catalyzes ERα monoubiquitination 
but blocking its polyubiquitination thereby increasing 
ER protein stability.127 Retinoblastoma transcription-
al corepressor (RB) has also been reported to interact 
with and stabilize ERα, protecting it from degradation 
by the ubiquitin-proteasome system (UPS) in breast 
cancer.139,140

ERα Phosphorylation
Phosphorylation of ERα also regulates its stability and 
function. ERα is phosphorylated following the acti-
vation of various kinases. It has been reported that 
MAPK, AKT, PKA, RSK and Src kinase-associated 
pathway phosphorylates various residues of ERα.141-143 
The kinases like glycogen synthase kinase 3 (GSK3), 
lemur tyrosine kinase 3, abelson tyrosine-protein ki-
nase and casein kinase 2 also phosphorylate and stabi-
lize ERα.130-135 Phosphorylation impacts ERα in various 
ways including altering its ubiquitination, chromatin in-
teractions, recruitment of coregulators and the expres-
sion target genes that trigger the growth of breast tumor 
and patient response to endocrine therapy.40,144-147 Con-
comitant to phosphorylation, there are also other mech-
anisms and proteins associated with ERα stability. For 
example, phosphatidylethanolamine binding protein 4 
that competes with ERα for components of the UPS and 
other posttranslational modifications like acetylation, 
palmitoylation, can also affect ERα stability by affecting 
its phosphorylation.148-150 On top of this, c-Abl regulates 
ERα transcription activity through its stabilization by 
phosphorylation.132

ERα Glycosylation
So far, there is no experimentally validated glycosylation 
of human ERα. However, mouse ERβ has been report-
ed to undergo an alternative O-glycosylation/O-phos-
phorylation. This posttranslational modification occurs 
on Serine-16 near to the transactivation domain and 
Threonine-575 as part of a PEST region (a peptide se-

quence that is rich in proline, glutamic acid, serine, and 
threonine which acts as a signal peptide for prompt pro-
tein degradation) on mouse ERβ suggesting that glyco-
sylation may regulate transactivation and turnover of 
ERβ indicating that such saccharide modification may 
also play a role in modulating the dimerization, stability, 
or transactivation functions of Estrogen receptors.151-153 
More recently ERα Glycosylation by N-Acetylgalac-
tosaminyltransferase 6 (GALNT6) found to affect its 
nuclear localization in breast cancer cells.154 Moer re-
cently GREB1 a well known top E2 responsive ER target 
that regulate ER signaling in breast cancer was com-
putationaly identified as a putative glycosyltransferase 
enzyme.155,156 Another study also showed that the ami-
no-terminal of GREB1 interracts with ERα thereby trig-
ger progression of breast cancer.157 Nevertheless whether 
the conserved c-terminal GREB1 domain predicted to 
have glycosyltransferase activity affects the transcrip-
tional co-activator function of ERα or albeit affect ERα 
stability remains to be biochemically investigated.

Mutation of ERα 
ERα gene (ESR1) somatic mutations have been linked to 
the acquired resistance to endocrine therapies in breast 
cancer.12,158-161 The most prevalent point mutations of 
ERα are Y537S and D538G.158 These mutations which 
are found on the LBD of ERα have been reported to af-
fect the ERα co-activator binding conformation as well 
as chaperone-mediated regulation of ER stability.158 In 
breast tumour cells, ERα mutations at the sites linked to 
ERα degradation were also reported to regulate its sta-
bility.114,134

Altered ERα expression 
The deregulation of E2–ER signaling plays a critical role 
in the initiation and progression of target tissue ma-
lignancies as well as in ER-driven neoplastic processes 
and also the development of endocrine resistance in the 
treatment of estrogen target tissue malignancies, exem-
plified by breast cancers.19,162-164

The regulation of ERα signaling could be altered due 
to alteration of ER expression via epigenetic events that 
leads to the initiation and/or progression of numerous 
types of cancer including breast cancer. Epigenetic dys-
regulation of the GC-rich promoter of ER due to meth-
ylation-mediated ERα gene silencing during tumor 
progression happens in one-third of breast cancers that 
initially express ERα.165

Altered reregulation of ERα function and activity 
The E2 induced ER signaling could underlay the car-
cinogenesis of breast cancer if the ERα function and 
activity is altered. For instance the loss of control over 
cell cycle progression following overexpression of Cy-
clin D1 could be due to heightened E2 induced ER sig-
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naling that recruits various transcription factors that 
involve ATF-2 and c-Jun without ERE requirement on 
the cyclin D1 promoter.166,167 The extranuclear actions of 
ER also affect breast cancer cell proliferation, migration, 
drug resistance, and apoptotic inhibition by stimulating 
various pathway cross-talks.168,169 Rapid E2 action leads 
to the activation of IGF-1R and EGFR as well as stim-
ulation of the Src kinase, MAPK, PI3K, and protein ki-
nase C (PKC) pathways in the cytosol for breast cancer 
cells. 22,23

On top of this, there several studies that show ERα coreg-
ulators in ER signaling also play role in the development 
breast cancer. Many well-characterized coregulators 
with the potential to influence the ERα-mediated breast 
cancers by interacting with ERα thereby regulate chro-
matin remodeling and directly or indirectly regulate 
target gene expression.20,21 For instance, the AIB1 coact-
ivator activates ERα-dependent transcription by recruit-
ing HAT such as p300 and P/CAF to ERα target gene 
chromatin.170 AIB1 interacts with ERα in a  ligand-de-
pendent fashion and it leads to ERα stabilization in the 
presence of E2, thereby regulating ERα activity, as well 
as ERα protein degradation mediated by the ubiquitin 
proteasome pathway.171

Recently, GREB1 was reported to function as a tran-
scription co-activator of ERa. Loss or dysregulation of 
GREB1 substantially decreased ERα-mediated gene 
transcription and reduced tumor growth.155,172-174 One 
study found GREB1-ERa interactions in 50% of ER+ 
cancers and showed GREB1 expression was correlat-
ed with a good clinical outcome.151 Nevertheless, little 
is known about the exact role of GREB1 in the cascade 
of hormone action, though it appears to be a key E2-in-
duced gene having a role in ER signaling. MUC1 is also 
a potent coactivator of ERα. It regulates ERα activity by 
directly binding to the DNA binding domain of ERα 
and stabilizes ERα by blocking its ubiquitination and 
degradation in breast cancer cells.175

In contrast to coactivators, corepressors recruit his-
tone deacetylases (HDACs) to ERα target gene chro-
matin, which leads to the chromatin condensation and 
the inhibition of ERα target gene expression in breast 
cancer cells.7 The corepressors counterbalance the ac-
tions of coactivators to orchestrate the magnitude of E2 
responses, which leads to the inhibition of ERα target 
gene expression. Therefore, the loss of ERα corepressors 
promotes breast cancer.176 For instance, MTA1 contain-
ing nucleosome remodeling and histone deacetylation 
complex (NuRD) suppresses ERα-mediated gene ex-
pression, resulting in invasive breast cancer pheno-
type.177 While Nuclear receptor corepressor 1 (NCOR1) 
is another well-defined corepressor of ERα that inhib-
its ERα transcriptional activity by binding to the li-
gand-binding domain. Low expression of NCOR1 is 
associated with shorter relapse-free survival in breast 

cancer patients, which shows that loss of NCOR1 en-
hances breast cancer development.178 As ERα-mediat-
ed physiological response results from the coordination 
between ERα, coactivators, and corepressors, targeting 
expression-profiles for all coregulators may help patient 
diagnosis and treatment of the breast cancer subtypes.

Conclusions 
ER+ breast cancer constitutes a major fraction of breast 
cancers. Thus, tremendous efforts have been made to ex-
plore ERα function and its relevance to breast cancer. As 
a result, many novel mechanisms of E2/ERα-mediated 
breast cancer development were discovered including 
epigenetic regulation of ERα expression, altered stabil-
ity and identification of hundreds of ERα coregulators 
and their association with breast cancer development. 
The extensive posttranslational modification of estrogen 
receptor regulating ERα stability shows the complexity 
of ER signals, especially when pathway crosstalk hap-
pens with other oncogenic signals. Hence, a better un-
derstanding of oncogenic events that drives expression, 
activity, stability of ERα may play a critical role in the 
development of diagnostic and prognostic biomarker as 
well as to overcome endocrine therapy resistance.
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