RECEZJA

rozprawy doktorskiej pana magistra Mateusza Molonia pod tytułem:

„Rola tempa wzrostu objętości komórek drożdży Saccharomyces cerevisiae w determinowaniu ich potencjału replikacyjnego i długości życia”

Magister Mateusz Moloń wybrał na temat swojej rozprawy problem starzenia się organizmów. Taki temat wzbudza zrozumiałe zainteresowanie i emocje wśród wszystkich, także profesjonalnych badaczy. Jest to z jednej strony stymulujące ale może też doprowadzić do osłabienia krytycznym i obniżenia standardów naukowych. Gerontologia zna wiele takich przypadków. Kontrowersyjny bywa już sam wybór organizmu do badań. Tak jest w przypadku jednokomórkowych drożdży używanych jako model do badaniaługowieczności organizmów wielokomórkowych. Stosowanie drożdży jako modelu w badaniach podstaw genetyki, biochemii i biologii komórkowej doprowadziło do wielu sukcesów. Nie oznacza to jednak, że można je stosować z równym powodzeniem w innych dziedzinach. Wybierając takie zagadnienie i taki organizm mgr Moloń musiał się zmierzyć nie tylko z samą pracą badawczą ale też umieścić ją w kontekście badań wcześniejszych, które były liczne, ale które oprócz cennych osiągnięć przyniosły też sporo wyników niepewnych a nawet pozornych. Zaznaczam to na wstępie mojej recenzji, aby podkreślić, że jakkolwiek przedstawiona praca ma charakter eksperymentalny, to istotnym elementem jej oceny musi być odniesienie się do jej warstwy koncepcyjnej. Od razu też powiem, że waga podejmowanego zagadnienia i celność krytyki badań wcześniejszych przeprowadzonej przez autora są atutami tej pracy i istotnie podnoszą jej ogólną ocenę. Podsumowując, temat pracy oceniam jako dobrze dobrany, znajdujący się w obszarze zainteresowań współczesnej nauki i mogący wnieść do niej nowe elementy wiedzy, a tym samym odpowiedni dla rozprawy doktorskiej.

We wstępie doktorant przedstawił wszystkie ważniejsze teorie tłumaczące proces starzenia się organizmów dziając je na ewolucyjne i mechanistyczne. Te pierwsze zostały potraktowane skrótnie, brakuje mi zwłaszcza choćby rudymyntarnego przeglądu empirycznych testów tych koncepcji. Rozumiem jednak, że autor jest lepiej przygotowany do referowania hipotez mechanistycznych i to zrobił bardzo dobrze. Dalsza część wstępu omawia wcześniejsze zastosowania drożdży w badaniach długości życia i starzenia się. Zarówno badania tak zwanego replikacyjnego jak i chronologicznego starzenia się drożdży przedstawione są wyczepująco i poprawnie. Nie mogę się jednak zgodzić z twierdzeniem autora, że: „Pozywki minimalne stosowane w badaniach chronologicznego starzenia w doskonały sposób naśladowują warunki panujące w naturze”. Nie wiemy, w jakich warunkach żyją drożdże piekarnicze w naturze. Byłoby lepiej gdyby autor przyjął, że laboratoryjne warunki hodowli wcześnie nie
muszą naśladować naturalnych by wyniki eksperymentów były wartościowe.
Szczególnie ważny dla niniejszej rozprawy powinien być opis mutacji wpływających na
różne miary długowieczności. Nie można powiedzieć by odnośny fragment był zbyt
krótki. Jest tam wiele informacji o poszczególnych genach, których mutacja zmienia
długość życia, szczególnie o tych genach, których delecje będą używane w
eksperymentcie. Brakuje jednak uzasadnienia dlaczego akurat te geny uznanе zostały
przez doktoranta za szczególnie ważne. Czy reprezentują one główne klasy genów
wpływających na długowieczność, są ciekawymi wyjątkami, czy też są ważne z innych
powodów. Te braki powodują, że kończący wstęp podrozdział „Cel pracy” wyraźnie
rozczarowuje. Jest to raczej zapowiedź podjętych i opisanych dalej czynności
laboratoryjnych niż sformułowanie celu naukowego. Jaki był cel badań staje się powoli
jasne w trakcie czytania całej rozprawy. Recenzent musi go odkryć, inni czytelnicy
mogą być mniej motywowani i należało im w tym pomóc.

Opisy metod są obszerne i pozwalające na odtworzenie eksperymentów, tym samym są
poprawne. Szczegółowe opisy procedur bez odwoływania się do innych prac mogłby oznaczać,
że zostały one rozwinięte samodzielnie przez autora. Nie twierdzę, że autor
to sugeruje. Raczej nie dopuścił odpowiedniego cytowania źródeł (drukowanych lub
istniejących w Internecie) i określenia swojego ewentualnego wkładu w modyfikację
stosowanych procedur. Nawet używając zestawów komercyjnych dobrze jest docenić
tych, którzy byli pomysłodawcami metody. Tym bardziej, gdy pisze się o nieco bardziej
złóżonych procedurach, np. transformacji z wykorzystaniem octanu litu, o której to
technice i jej historii recenzent akurat trochę wie, lub o profilowaniu polisomów, o czym
wie niewiele.

Ważną częścią pracy jest oczywiście rozdział prezentujący wyniki analiz
eksperymentalnych. Tytuł rozdziału okazuje się być mylący bo rozpoczyna się on
podaniem niektórych (bo inne są jeszcze dalej) argumentów stojących za wyborem
stosowanych szczepów i badanych delekcji. Następnie mamy podrozdział zatytułowany
„Przygotowanie materiału badawczego”. Właściwe wyniki zawierają dane o: krzywych
wzrostu, liczbie pączków, zmianach objętości komórki, a także reprodukcyjnej i
wreszcie po-reprodukcyjnej długości życia. Przeprowadzono je dla trzech szczepów, w
każdym dla typu dzikiego i czterech mutantów. Testy wydajności translacyjnej i
aktywności metabolicznej przeprowadzono dla jednego szczepu i dwóch mutantów.
Przed oceną wartości naukowej tych wyników zwróć uwagę na nieprawidłowości w ich
prezentacji i analizie.

(1) Autor poprzestaje na prezentacji graficznej i słownym opisie krzywych wzrostu w
kulturach płynnych badanych szczepów. Parametry wzrostu można było i należało
skwantyfikować. Służy temu może dopasowanie danych do wybranych modeli
wzrostu. Takie krzywe mają po co najmniej dwa parametry i bywają trudne w
interpretacji. Można zatem uwzględniać tylko fazę wzrostu wykładniczego i wyliczać, z
dobrym przybliżeniem, maksymalne tempo wzrostu jako regresję zlogarytmowanego
zagęszczenia. Taki parametr, wraz z oszacowaniem błędu, nadaje się do
bezpośrednich porównań tempa wzrostu różnych szczepów.

(2) Dane o potencjale reprodukcyjnym przedstawiono w formie opadających krzywych
pokazujących jaki procent komórek zdołał przeprowadzić jedno, dwa, trzy, itd.
pączkować. Taki wykres wygląda jak krzywa przeżywania i autor przyjął tę konwencję.
Tymczasem jedną z głównych, i akceptowanych przez recenzenta, też tej rozprawy jest
to, że liczba pączkowań jest przede wszystkim liczbą pączkowań a nie oczywistą miarą długowieczności. Należało chyba dać rozkłady częstości gdzie na osi poziomej byłyby liczby pączków a na osi pionowej liczby szczepów, które je osiągnęły. Tym bardziej, że o wykryciu różnic między szczepami decydował test t oparty właśnie na średniej liczbie pączków, a nie na różnicach w przebiegu krzywych rzekomego przeżywania. Różnice w krzywych przeżywania są znacznie trudniejsze do wykrycia i interpretacji.


(5) Dla porównania wielkości komórek, a potem także innych wielkości, doktorant pokazuje średnie i odchylenia standardowe. Różnice istotne na poziomie 0.01 zaznacza gwiazdkami. Tymczasem stosować należy błąd standardowy lub przedział ufności. Odchylenie standardowe jest mylące bo nie uwzględnia wielkości próbki. Jeżeli pomierzono 100 komórek, to błąd standardowy jest 10 razy mniejszy niż odchylenie, a 99% przedział ufności niemal cztery razy. Na wielu obecnych wykresach słupki odchylenia standardowego są dość duże i zachodzą na porównywane średnie co jest mylące. Sytuację ratują wspomniane gwiazdki ale tylko częściowo.

(6) Bardzo ważne dla wywodów autora jest stwierdzenie, że ekstremalny wzrost wielkości mutantów sfp1 na tle BMA często kończy się pęknięciem komórki. Nie widzę dokumentacji tego wyniku w postaci zliczeń, wykresów a tym bardziej testu statystycznego.


W swoich dotychczasowych uwagach skupiłem się na negatywnych aspektach przedstawionej rozprawy. Jest to obowiązkiem recenzenta. Nie oznacza to, że nie dostrzegam jej silnych stron. Jak wspomniałem, już samo krytyczne podejście autora do badania starzenia się drożdży zasługuje na uznanie. Łączna ocena wstępu do rozprawy i dyskusji wyników pozwala mi stwierdzić, że doktorant wykazał wymaganą przez ustawę o stopniach i tytułach naukowym „ogólną wiedzę teoretyczną kandydata w danej dyscyplinie naukowej”. Oczekiwania, by rozprawa stanowiła „oryginalne rozwiązanie problemu naukowego” także uznauję za spełnione. Wychodząc od popravnego

Przedstawiona praca jest obszerna, obejmuje 149 stron, zawiera 89 rycin, 15 tabel i 214 pozycji bibliograficznych. Układ rozdziałów jest typowy. Poruszanie się po maszynopisie ułatwia ścisłe numerowanie podrozdziałów i umieszczone na jego początku spis treści i lista skrótów. Układ graficzny maszynopisu i wbudowanych wejść rycin jest na ogół przejrzysty i estetyczny. Uchybiania są nieliczne i dotyczą spraw drobnych, na przykład, rozpoznawania akapitów bez wcięcia i niekonsekwentnego, zresztą niepotrzebnego, stosowania szerszej interlinii po niektórych akapitach. Terminologia jest zasadniczo poprawna i konsekwentnie stosowana. Ogólnie, ocena rozprawy od strony redakcji tekstu wypada pozytywnie.


Kraków, 26.06.2014

prof. dr hab. Ryszard Korona