Recenzja
rozprawy doktorskiej mgr inż. Anety Jareckiej
pt.: „Reakcja pszenicy zwyczajnej jarej na zróżnicowaną intensywność uprawy oraz wysiew odmian przewódzkowych w terminie jesiennym”
wykonanej w Katedrze Produkcji Roślinnej,
na Wydziale Biologiczno-Rolniczym Uniwersytetu Rzeszowskiego
pod kierunkiem promotora prof. dr hab. inż. Doroty Bobreckiej-Jamro
oraz promotora pomocniczego dr. hab. inż. Jana Buczka

1. Podstawa formalna wykonania recenzji rozprawy


2. Ocena wyboru problematyki badawczej rozprawy

W Polsce w 2018 roku zbiory zbóż przewiduje się na poziomie około 30,5 mln ton ziarna, czyli około 5% mniej niż w 2017 roku, co wynika m.in. z zmniejszenia arealu zasiewów formy oziomych oraz niekorzystnego przebiegu warunków wilgotnościowo-termicznych w okresie wegetacji roślin (susz). W strukturze zasiewów zbóż stale dominują oziębnik (ok. 55%), a sumaryczna powierzchnia zasiewów oscyluje na poziomie 7,6 mln ha. Pszenica zwyczajna obydwu form (ozima, jara) jest niekwestionowanym liderem pod względem arealu uprawy w Polsce (2,34 mln ha). Wynika to przede wszystkim z faktu jej wielorakiego wykorzystania zarówno na cele konsumpcyjne, paszowe jak i przemysłowe. Na poziom uzyskiwanych plonów ziarna i jego jakość oprócz typu odmiany hodowlanej, przebiegu pogody w sezonie wegetacyjnym mają istotny wpływ wybrane przez producenta (rolnika) elementy jak np.: typ gleby, stanowisko w plodozmnianie, czy technologia produkcji. Zmiany klimatu
obserwowane na przestrzeni ostatnich lat wymuszają na producentach rolnych poszukiwanie nowych rozwiązań w zakresie optymalizacji technologii uprawy pszenicy. Nie rozpoznawany dotąd w pełni w Polsce zagadnieniem jest możliwości prowadzenia uprawy pszenicy zwyczajnej z wykorzystaniem odmian przewódkowych, co w kontekście chociażby wspomnianych wcześniejszych zmian klimatycznych wpisuje się w strategię optymalizacji agrotechniki tego gatunku.

Mając na uwadze powyższe informacje stwierdzam, że podjęta przez mgr inż. Anetę Jarecką w rozprawie doktorskiej problematyka badawcza jest ważna zarówno z naukowego jak i praktycznego punktu widzenia. Jako Recenzent zwracam szczególną uwagę na jej utylitarny charakter i możliwość wykorzystania uzyskanych danych bezpośrednio w szeroko rozumianej agrotechnice pszenicy zwyczajnej.

3. Ocena formalna rozprawy


4. Ocena merytoryczna rozprawy

Dysertację rozpoczyna rozdział „Wstęp”, w którym Autorka w syntetyczny sposób wprowadza Czytelnika w zagadnienia związane z realizowaną tematyką badawczą. Doktorantka
wskazuje przede wszystkim na różne możliwości wykorzystania ziarna pszenicy zwyczajnej oraz podkreśla rolę odpowiedniego wyboru odmiany hodowlanej do uprawy oraz zastosowanej technologii produkcji. Ukazuje także, że w ostatnich latach zmiany klimatu w Polsce, w tym głównie wzrost temperatur w okresie wiosennym, a także łagodniejsze zimy sugerują celowość podjęcia badań nad wysiewem odmian jarych pszenicy w okresie jesiennym.

Kolejno w rozdziale „Cel i hipoteza badawcza pracy” w umiejętności sposób formułuje cel główny pracy, określa jej zakres i stawia hipotezę roboczą. Celem badań realizowanych w oparciu o dwa ściśle doświadczenia polowe była oceny reakcji pszenicy jarej na:

- zróżnicowany poziom technologii uprawy (średniointensywny i intensywny) - doświadczenie I,
- wysiew przewódowych odmian w terminie jesiennym - doświadczenie II.

Zakres przeprowadzonych badań w obu doświadczeniach dotyczył:
- przebiegu wegetacji roślin,
- cech biometrycznych roślin,
- stanu odżywienia roślin (wskaźnik SPAD),
- wskaźników LAI i MTA,
- elementów struktury plonu,
- wielkości i jakości plonu,
- wyrównania ziarna.

W hipotezie badawczej założono, że:

- zróżnicowane zużycie przemysłowych środków produkcji w uprawie pszenicy jarej wpłynęły modyfikujące na wegetację roślin, cechy biometryczne, pomiary SPAD, LAI i MTA oraz wielkość i jakość plonu ziarna,
- wysiew przewódowych odmiany pszenicy jarej w terminie jesiennym przyniesie korzystne efekty produkcyjne, co pozwoli rekomendować najlepsze z nich do uprawy w rejonej badań.

Mając na uwadze sformułowany przez Autorkę cel i hipotezę roboczą, a także szeroki zakres prowadzonych badań stwierdzam że recenzowana dysertacja ma charakter praktyczny i z powodzeniem wpisuje się w zagadnienia dotyczące optymalizacji produkcji ziarna pszenicy jarej, z uwzględnieniem parametrów jakościowych i możliwości wykorzystania uzyskanego plonu.

W rozdziale „Przegląd literatury”, liczącym 18 stron maszynopisu, Doktorantka szczegółowo przedstawia charakterystykę botaniczno-rolniczą formy jarej pszenicy zwyczajnej, podaje podział odmian hodowlanych na grupy technologiczne, a także omawia szeroko
problematykę związaną z agrotechniką tego gatunku. Rozdział ten uboga rysunek 1 prezentujący optymalne i dopuszczalne terminy siewu pszenicy jarej w Polsce oraz tabela 1, w której Autorka przedstawia, za Korbasem i Mrówczyńskim, przedziały zawartości Nmin w glebie do głębokości 60 cm wczesną wiosną. Podsumowując stwierdzam, że rozdział ten został przez Doktorantkę opracowany bardzo rzetelnie, stanowi dobrą podbudowę teoretyczną rozprawy i świadczy o jej dużej wiedzy merytorycznej i praktycznej.

Rozdział „Materiał i metody badań” został opracowany przez Autorkę właściwie, a rozprawę przygotowano na kanwie dwóch niezależnych doświadczeń polowych przeprowadzonych w sezonach wegetacyjnych 2012/2013 - 2014/2015 w Zakładzie Doświadczalnym Oceny Odmian w Skołoszowie.

Doświadczenie I – miało na celu określenie reakcji wybranych odmian hodowlanych pszenicy zwyczajnej, formy jarej na dwa zróżnicowane poziomy intensywności uprawy. Doświadczenie to było dwuczynnikowe i przeprowadzone zostało w układzie równoważnych podbloków w czterech powtorzeniach. Czynnikami doświadczenia były:
I. czynnik: poziom technologii uprawy (średniointensywny A1, intensywny A2).
II. czynnik: odmiany hodowlane (Izera, Ostka Smolicka, Parabola, Struna, KWS Torridon, Tybalt, Arabella, Bombona, Kandel, Katoda, Łagwa, Monsun).

Doświadczenie II – miało na celu zbadanie reakcji wybranych odmian przewódowych pszenicy zwyczajnej, formy jarej na jesieni termin siewu. Było to doświadczenie jednoczynnikowe, założone w układzie losowanych bloków. Doświadczenie przeprowadzono w trzech powtorzeniach. Do badań wybrano pięć odmian: Izera, Ostka Smolicka, Parabola, Struna, Tybalt.

W tym rozdziale Autorka w sposób wyczerpujący przedstawiła lokalizację prowadzonych doświadczeń, zakres prowadzonych obserwacji i pomiarów biometrycznych pszenicy a także metodykę analiz laboratoryjnych zebranego materiału roślinnego. W trakcie wegetacji pszenicy notowano występowanie ważniejszych faz rozwijających roślin, które podano w skali BBCH. Wyleganie przed zbiorem oraz porażenie przez choroby oceniono w skali dziewięciopunktowej, przy czym 9° oznacza stan rolniczo najlepszy, a 1° stan najgorszy. Obsadę roślin liczono na powierzchni 0,5 m² po wschodach oraz przed zbiorem a w przypadku odmian przewódowych dodatkowo po ruszeniu wegetacji na wiosnę. Przed zbiorem liczono dodatkowo obsadę kłosów. Pomiary biometryczne przeprowadzono na 20 losowo pobranych z poletka roślinach. Obejmowały one ocenę: wysokości roślin, długości kłosa, liczby ziaren w kłosie i MTZ. Ponadto określono następujące indeksy: LAI - Leaf Area Index, MTA – Mean Tip Angle oraz SPAD - Soil Plant Analysis Development. Plon ziarna, zebrany kombajnem poletkowym, przeliczono na 1 ha przy 14% wilgotności a następnie skorygowano o brakujące rośliny pobrane do pomiarów biometrycznych. Plon słomy podano przy 20% wilgotności. Po zbiorze określono wyrównanie ziarna oraz wykonano analizy jakościowe obejmujące oznaczenie zawartości białka ogółem, tłuszczu surowego, popiołu surowego, włókna surowego oraz makro i mikroelementów. Całość
zebranych danych poddano ocenie statystycznej zgodnie z przyjętą metodyką badań za pomocą programu FR-ANALWAR-5FR.

Stwierdzam, że Doktorantka, trafnie dobrala metody analityczne do charakteru prowadzonych badań polowych i laboratoryjnych, co świadczy o umiejętym zaplanowaniu całości postępowania. Jednocześnie w tym rozdziale zawarła charakterystykę opisową wybranych do badań odmian, co znakomicie ułatwia Czytelnikowi szczegółowe zapoznanie się ze swoistymi cechami poszczególnych kreacji.

Rozdział „Warunki prowadzenia badań” zawiera szczegółowy opis warunków plurowotermicznych i glebowych dotyczących obydwu prowadzonych doświadczeń polowych. Przebieg warunków pogodowych przedstawiono na przejrzyistych wykresach, a charakterystykę gleb ujęto w formie tabelarycznej.

Rozdział „ Wyniki badań” obejmuje 81 stron i przedstawia analizę uzyskanych wyników w oparciu o weryfikację statystyczną zebranych danych. Opracowanie tego rozdziału jest bardzo staranne, logicznie uporządkowane i opiera się na wskazywaniu przez Autorkę statystycznie udowodnionych różnic w odniesieniu do poszczególnych badanych cech pszenicy. Tabele i wykresy zaprezentowano w sposób przejrzysty i staranny, co także ułatwia Czytelnikowi odbiór treści pracy. Autorka w dysertacji nie tylko potwierdza dotychczasowy stan wiedzy w zakresie możliwości uprawy odmian przewódowych pszenicy jarej w Polsce ale także wskazuje na znaczenie wzajemnych interakcji między badanymi czynnikami. Doktorantka zwraca uwagę, miedzy innymi, że badane odmiany różniły się stopniem porażenia przez choroby. Rośliny odmiany Monsun i Bombona były podatne na mączniaka prawdziwego liści odpowiednio skala 7,50⁰ i 7,58⁰. Odmiana Arabella była silnie porażona przez brunatną plamistość liści (7,58⁰), a Osta Smolicka przez rdzę brunatną (8,08⁰). Na roślinach odmiany Katoda odnotowano silne występowanie septoriozy liści (7,42⁰), zaś na odmianach Parabola i KWS Torridon septoriozy plew odpowiednio 7,50 i 7,58⁰. Dodatkowo odmiana Parabola była w dużym stopniu porażona fuzariozą kłosów (7,50⁰). Wyniki te mają bezpośrednie przełożenie dla praktyki rolniczej. Ponadto wykazano, iż plon ziarna pszenicy był istotnie zróżnicowany pomiędzy poziomami uprawy. Istotnie wyżej plonowała pszenica jara prowadzona z intensywną technologią uprawy w porównaniu do technologii średniointensywnej. Interesujące wyniki dotyczą jesiennego terminu siewu w odniesieniu do poziomu plonowania wybranych odmian. Plon ziarna odmian przewódowych był istotnie zróżnicowany. Najwyżej plonowały odmiany Parabola i Osta Smolicka, a istotnie niżej Izera. Uzyskana różnica wyniosła odpowiednio 2,5 i 2,2 t·ha⁻¹. Poziom uzyskiwanych plonów bezpośrednio interesuje producentów rolnych, gdyż od jego wielkości zależy często końcowy efekt ekonomiczny i powodzenie uprawy w gospodarstwie.

Rozdział „Dyskusja” opracowano sprawnie na 9 stronach maszynopisu i obejmuje on próbę wyjaśnienia przez Doktorantkę zaistniałych zjawisk w oparciu o konfrontację wyników własnych z dostępnymi wynikami badań innych autorów z tego zakresu. Rozdział ten został napisany z dużym zaangażowaniem Autorki i wykorzystaniem różnego rodzaju źródeł.
literaturowych. Doktorantka powołuje się szereg pozycji literaturowych, które ściśle korespondują z realizowaną tematyką pracy.

Autorka w rozdziale „Wnioski” zawarła 12 wniosków nawiązujących do założonego celu badań i hipotezy roboczej. W sposób syntetyczny odzwierciedlają one uzyskane wyniki badań i mają najczęściej charakter podsumowujący. Za bardzo cenny z utylitarnego punktu widzenia oceniam wniosek 3 wykazujący, że intensywne poziom technologii uprawy (A2) skutkował: wydłużeniem okresu wegetacji roślin (o 3 dni), zmniejszeniem stopnia wylegania roślin (o 0,92%), wykształceniem niższych roślin (o 19,9 cm), wyższą wartością indeksu SPAD w fazie kłoszenia (o 5,2 jednostki), zwiększeniem obsady kłosów na 1m² (o 5,1 szt.), wzrostem plonu ziarna (o 1,6 t·ha⁻¹), wzrostem zawartości żelaza w ziarnie, największym przyrostem plonu u odmian Ostka Smolicka i Łagwa, zaś najmniejszym u odmian KWS Torridon i Kandelna w odniesieniu do niższego poziomu technologii uprawy (A1). Ponadto jako nowość uważam wykazanie, że siew jesienny odmian przewódzkowych pszenicy skutkuje: najwyższymi roślinami u odmiany Struna (95 cm), najdłuższymi kłosami u odmiany Parabola (8,3 cm), największą liczbą kłosów w kłosie u odmiany Ostka Smolicka (22,4 szt.) a najlepszym wyrównanie, ziarna dla odmian Parabola (85,4%) i Ostka Smolicka (84,3%). Z odmian przewódzkowych najlepiej plonowała Parabola (7,9 t·ha⁻¹) i Ostka Smolicka (7,6 t·ha⁻¹) a istotnie niżżej IZera (5,4 t·ha⁻¹).

Rozprawę zamyka rozdział „Literatura”, w którym zestawiono 157 materiałów źródłowych wykorzystywanych przez Autorkę przy opracowywaniu rozdziałów „Wstęp”, „Przegląd literatury” i „Dyskusja”. Szeroki dobór pozycji literaturowych wykorzystanych w dysertacji wskazuje, że Doktorantka dobrze orientuje się w zakresie realizowanej problematyki badawczej i potrafi w oparciu o dane innych autorów interpretować uzyskane wyniki.

W czasie studiowania tej interesującej rozprawy nasunęły mi się jako Recenzentowi następujące uwagi, które Autorka mogłaby przemyśleć i wykorzystać przy przygotowywaniu pracy do druku w publikatorach naukowych.

Uwaga 1.
Proponuję dokonać korekty tytułu rysunku 1, np. Terminy optymalne i dopuszczalne siewu pszenicy jarej w Polsce (vidi rozdział „Przegląd literatury”, strona 15).

Uwaga 2.
Proponuję stosować w treści dysertacji zapis jednostek wyrażających wielkości poszczególnych parametrów w formie iloczynów, bez ich rozdzielenia symbolami chemicznymi np. kg·ha⁻¹ N (vidi rozdział „Przegląd literatury”, strona 18, tabela 1, kg N·ha⁻¹).

Uwaga 3.
Proponuję unikać w tekście rozprawy doktorskiej określenia „nasion” w odniesieniu do gatunków zbożowych należących w nowej systematyce botanicznej do klauz jednoliściennych, których owocem, a zarazem materiałem siewnym są ziarniaki (vidi rozdział „Materiał i metody badań”, strona 26-27, Norma wysiewu nasion wyniosła 450 szt.·m⁻².).
Uwaga 4.
Proponuję w rozdziale „Materiał i metody badań” w tabeli 2 dokonać korekty i zamiast sformułowania nawóz azotowy użyć określenia np. dawka azotu, których wartości podano odpowiednio 80 kg·ha⁻¹ i 140 kg·ha⁻¹ dla technologii A1 i A2 (vidi strona 26 i 27).

Uwaga 5.
W treści dysertacji pojawiają się sporadycznie jednostki spoza układu SI np. litry (l), które proponuję zastąpić dm³ (vidi rozdział „Materiał i metody badań”, tabela 2, strona 26).

Uwaga 6.
Aktualnie obowiązującym standardem zapisu zawartości makroskładników (mg) jest ich podawanie na 1000 g gleby w formie pierwiastkowej (vidi podrozdział „Warunki glebowe”, tabela 4, strona 39).

Uwaga 7.
W tekście pracy nie odnalazłem powołań na następujące materiały źródłowe wymienione w rozdziale „Literatura”:


Proponuję uzupełnić brakujące pozycje w tekście pracy.
Powyższe uwagi mają jedynie charakter edytorski oraz formalny i w żadnym stopniu nie umniejszają one wartości merytorycznej recenzowanej dysertacji.

W czasie lektury pracy nasunęły mi się następujące pytania:
Pytanie 1.
Czy biorąc pod uwagę uzyskane plony ziarna pszenicy uprawianej w technologii intensywnej A2 oraz poniesione koszty bezpośrednie w porównaniu do technologii średniointensywnej A1 można wykazać, że jest to ekonomicznie uzasadniona decyzja, przyjmując, iż aktualna cena 1 tony ziarna pszenicy kształtuje się średnio na poziomie 820 złotych?

Pytanie 2.
Czy widzi Pani możliwość szerszego wprowadzenia do uprawy odmian przewódkowych pszenicy w Polsce? Jakie są ich wady, a jakie zalety?
5. Wniosek końcowy

Rozprawa doktorska mgr inż. Anety Jareckiej charakteryzuje się wysokim poziomem naukowym i ma duże znaczenie utylitarne dla szeroko rozumianej praktyki rolniczej. Stąd oceniam ją ze wszech miar pozytywnie. Na potrzeby realizacji badań polowych i laboratoryjnych oraz opracowania uzyskanych wyników Doktorantka wykazała się bardzo dużym nakładem pracy własnej, co również dostrzegam i doceniam. Stwierdzam, że podjęta przez Autorkę tematyka badawcza jest nowatorska i w dotychczasowej literaturze tematu znalazłem stosunkowo niewiele informacji z tego zakresu. Dlatego jako Recenzent, a jednocześnie agrotechnik jestem usatysfakcjonowany z przedłożonej do oceny dysertacji.

Podsumowując stwierdzam, że przedstawiona do oceny rozprawa doktorska mgr inż. Anety Jareckiej pt.: „Reakcja pszenicy zwyczajnej jarej na zróżnicowaną intensywność uprawy oraz wysiew odmian przewódowych w terminie jesiennym” spełnia wszystkie wymagania stawiane tego typu pracom, a zawartymi w Ustawie z dnia 14 marca 2003 roku, o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz.U. Nr 65, poz. 595, z późn. zm.). Jednocześnie podkreślHam, że tematyka przeprowadzonych badań, ich zakres oraz opracowana dysertacja w pełni wpisują się w obszar nauk rolniczych, leśnych i weterynaryjnych, dziedzinę nauk rolniczych i dyscyplinę naukową agronomii.

Potraktuję biorąc pod uwagę wysoki poziom naukowy ocenianej rozprawy oraz jej charakter utylitarny wnioskuję o jej wyróżnienie.

Podsumowując wnioskuję do Rady Wydziału Biologiczno-Rolniczego Uniwersytetu Rzeszowskiego o dopuszczenie mgr inż. Anety Jareckiej do dalszych etapów przewodu doktorskiego.