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Interband pairing in extended two- and three-band Hubbard model
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35-958 Rzeszów, Poland

We study the existence of intraband and interband pairing in the extended two band and three-band
Hubbard model. It is shown that including interband pairing significantly increases the supercon-
ducting critical temperature in comparison with critical temperature of the intraband pairing. This
increase allows for decrease of the nearest-neighbor interaction constant necessary for critical tem-
perature in high temperature superconductors to the realistic values.

PACS: 74.20.-z, 74.20.Fg, 74.80.Dm

1. Introduction

High temperature superconductivity was discovered over fifteen years ago [1], but still today the mechanism of this
phenomena is not uniquely established. The matter is made additionally more difficult by complicated band structure
of the cuprates. The superconducting state is observed mainly in the CuO2 planes but it is created and influenced
by the whole structure of cuprates, e.g. the apex oxygen [2–4] or other donor of localized level (Resonant Pinning
Centers (RPC) [5]). Even description of the single superconducting CuO2 plane is rather complicated since in this
plane the relatively lightly bound oxygen holes interact with strongly correlated copper holes. In the result we obtain
hybridized oxygen and copper holes [6,7]. Interaction between the CuO2 planes and the interaction of copper and
oxygen holes within the CuO2 plane can be described by the two band model, in which strongly correlated levels are
hybridizing with the broad conducting band [4,8–11]. The two band model can be used for superconductivity also for
heavy fermion materials [12–14]. In most of the two-band models [4,8,11–13] it is assumed that the superconducting
gap exist only in one hybridized band. Extension of this concept was presented in models in which there were two
order parameters [10,15,16], but the order parameter in the band in which there is no Fermi level has very little
influence on the results and particularly on the critical temperature [10]. More interesting is the use of additional
interband order parameters for superconductivity [17,18]. This concept is similar to the concept of interlayer order
parameter used in the multilayer models [19–21]. In this paper we analyze the two-band model using both intraband
and interband order parameters of superconductivity. We assume that the broad oxygen band is hybridized with the
copper level what gives two bands separated with the hybridization gap. In a three-band model we analyze broad band
interacting with two correlated copper levels ( 3dx2−y2 and 3d3z2−r2), what gives three hybridized bands. Including
the 3d3z2−r2 level is stimulated by the experimental reports that there is a several percentage content of 3d3z2−r2 holes
in the electronic spectrum of layered cuprates (see [2,22]). In this paper we will concentrate mainly on the d-wave
superconductivity. Series of experiments by ARPES [23] and SQUID [24] have shown that most of the cuprates have
d-wave superconductivity. This kind of superconductivity is caused by the negative nearest-neighbor interaction W,
for which there is no unique explanation until now. One proposal was that in the three band model there is a significant
difference; ∆V = Vz −Vx , where Vx(Vz ) is the nearest-neighbor interaction between copper orbital 3dx2−y2(3d3z2−r2)
and the oxygen band 2p [25]. In the strong correlation limit the nearest-neighbor interaction W is equal to ∆V .
The problem is arising after we try to fit the value of negative ∆V to the critical temperature of the order of 100 K.
This value for d-wave superconductor comes out to be unrealistically high [26]. Yet another source of the negative
W can be the charge transfer instability [27,28]. Further on in this paper, to create the d-wave superconductivity,
we assumed the existence of attractive nearest-neighbor interaction W, without going into details of its origin. In
section 2 of this paper we propose the Hamiltonian describing interaction between the broad band (e.g. oxygen band
2p) and the localized level (e.g. copper orbital 3d). This Hamiltonian is diagonalised by the standard procedure.
To analyze superconductivity in hybridized bands we will use the Hartree-Fock factorization and the Green function
formalism. In the result we obtain equations for the critical temperature of the d-wave and s-wave superconductor
including both; intraband and interband pairing. In section 3 we analyze the dependence of critical temperature for
d-wave superconductivity and nearest-neighbor interaction constant W, on the energy difference between center of
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the broad band and the localized level. In addition we present in this section the influence of the interband pairing
on values of critical temperature and nearest-neighbor interaction W in the three-band model.

2. The Model Hamiltonian

The Hamiltonian of the two-band model has the following form

H = H0 + HI (1)

where the kinetic part H0 is given by

H0 = (εp − µ)
∑

iσ

npiσ
+ tpp

∑

ijσ

(p+
iσpjσ + h.c.) + (εd − µ)

∑

iσ

ndiσ
+ tpd

∑

ijσ

(

d+
iσpjσ + h.c.

)

(2)

with p+
iσ(piσ) creating (annihilating) hole in the broad band, d+

iσ(diσ) creating (annihilating) hole in the localized
level, npiσ

= p+
iσpiσ is the hole number operator in the broad band, ndiσ

= d+
iσdiσ is the hole number operator on the

localized level, tpp is the broad band hopping integral, tpd is the integral of hopping between the broad band and the
narrow level, εd is the energy of the narrow level, εp is the mean energy of the broad band.

The potential part of the Hamiltonian HI is given by

HI = Up

∑

jσ

npjσ
npj−σ

+ Ud

∑

iσ

ndiσ
ndi−σ

+ W
∑

<ij>σ,σ′

ndiσ
npjσ′

, (3)

where Up is the Coulomb repulsion in the broad band, Ud is the Coulomb repulsion on the narrow level, and W is the
attractive nearest-neighbor interaction between holes in the broad band and in the narrow level.

We assume strong Coulomb correlation on the localized level (Ud → ∞), which is taken as the zero energy level
(εd = 0 ). This will change the kinetic part of the Hamiltonian to the following form

H0 = (εp − µ)
∑

iσ

npiσ
+ tpp

∑

ijσ

(p+
iσpjσ + h.c.) + t̃pd

∑

<ij>σ

(

d+
iσpjσ + h.c.

)

− µ
∑

iσ

ndiσ
, (4)

where the normalized hopping integral has the form

t̃pd = tpdZ
1/2, (5)

with factor Z responsible for dynamic (hopping) electron correlation on the localized level. This factor can have one
of the following forms

Z = 1 − nd (mean-field approximation) (6)

or

Z =
1 − nd

1 − nd

2

(according to Gutzwiller approximation [29]). (7)

The kinetic part of Hamiltonian in the momentum space has the form

H0 =
∑

kσ

(εk − µ)p+
kσpkσ +

∑

kσ

(t̃pd,kd+
kσpkσ + h.c.) − µ

∑

kσ

d+
kσdkσ, (8)

where the dispersion relation for the broad band εk, as can be seen from the geometry of the CuO2 plane, is given by

εk = εp − 2tpp [cos(kx + ky) + cos(kx − ky)] . (9)

The interband hopping integral in the momentum representation has the form

t̃pd,k = t̃pd

∑

δ

eikδ , (10)
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where δ is the distance between broad band atom (oxygen) and the nearest narrow level atom (copper).
In the strong correlation limit (Ud → ∞) the second term in Hamiltonian (3) will disappear since there is no

double occupancy on the copper atoms. The strong correlation, Ud, will contribute to the negative nearest-neighbor
interaction W = Vz −Vx < 0, when we consider that in reality there are two orbitals on copper (3dx2−y2 and 3d3z2−r2)
with different strength of interaction Vx, Vz with adjacent oxygen orbitals 2px,y (see [25]). In the result the potential
part of the Hamiltonian (3) in the momentum representation will take on the form

HI = Up

∑

kk′σ

p+
kσp+

−k−σp−k′−σpk′σ +
∑

kk′σ

Wkk′d+
kσp+

−k−σp−k′−σdk′σ, (11)

where

Wkk′ = W
∑

δ

ei(k−k′)δ = W (γkγk′ + ηkηk′ ), (12)

γk = cos kx + cos ky, ηk = cos kx − cos ky. (13)

In pairing potential we neglected the triplet pairing terms.
In this paper we do not analyze in details the source of the negative interaction W . We will only mention in

here that in addition to the Weber’s mechanism there is also a charge transfer from copper atoms to apex oxygen
atoms laying directly above or beneath it. This charge transfer will create opposite charges on copper atoms and in
plane oxygen atoms laying next to them, and result in the negative electrostatic W . This negative nearest-neighbor
interaction will contribute to the d-wave superconductivity in addition to mentioned above Weber’s mechanism.

To analyze our two-band model first we have to diagonalize the kinetic part of our Hamiltonian given by Eq. (8)
using the transformation between original (p, d) and new (α, β) operators described by

(

p+
k

d+
k

)

=







E
+

k
√

(E+

k
)2+t̃2

pd,k

E
−

k
√

(E−

k
)2+t̃2

pd,k

t̃pd,k
√

(E+

k
)2+t̃2

pd,k

t̃pd,k
√

(E−

k
)2+t̃2

pd,k







(

α+
k

β+
k

)

, (14)

where the dispersion relation for hybridized quasiparticles is given by

E±

k =
1

2

[

εk ±
√

ε2
k + 4t̃2pd,k

]

. (15)

The kinetic energy of the hybridized state has the form

H0 =
∑

kσ

(E+
k − µ)α+

kσαkσ +
∑

kσ

(E−

k − µ)β+
kσβkσ. (16)

In the next step we transform interaction Hamiltonian (11) using the same transformation of Eq. (14), which
diagonalized the kinetic part of the Hamiltonian. To simplify further analysis we will neglect the weak Coulomb
correlation in the broad band (Up = 0), because this repulsion in mean-field approximation does not influence the
d-wave superconductivity [30, 31]. In the result we obtain

HI =
∑

kk′σ

Wkk′

(

ω+
k α+

k,σ + ω−

k β+
k,σ

)(

u+
−kα+

−k,−σ + u−

−kβ+
−k,−σ

)

×
(

u+
−k′α−k′,−σ + u−

−k′β−k′,−σ

) (

ω+
k′αk′,σ + ω−

k′βk′,σ

)

, (17)

where

u±

k =
E±

k
√

(E±

k )2 + t̃2pd,k

and ω±

k =
t̃pd,k

√

(E±

k )2 + t̃2pd,k

. (18)

In Hamiltonianu (17) we have 16 combinations of operators α and β. For each of them we use the Hartree-Fock
factorization

ωα+
k,σα+

−k,−σα−k′,−σαk′,σ =< α+
k,σα+

−k,−σ > α−k′,−σαk′,σ

+α+
k,σα+

−k,−σ < α−k′,−σαk′,σ > + < α+
k,σα+

−k,−σ >< α−k′,−σαk′,σ >
. (19)
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In the result, after omitting the constant terms (the last one in Eq. (19)), we obtain from Hamiltonian (17) the
following equation

HI =
∑

k,σ









αk,σ

α+
−k,−σ

βk,σ

β+
−k,−σ









+ 







0 fk,1∆
∗

k 0 fk,3∆
∗

k

fk,1∆k 0 fk,4∆k 0
0 fk,4∆

∗

k 0 fk,2∆
∗

k

fk,3∆k 0 fk,2∆k 0

















αk,σ

α+
−k,−σ

βk,σ

β+
−k,−σ









, (20)

where the functions fk,i are defined as

fk,1 = ω+
k u+

k , fk,2 = ω−

k u−

k , fk,3 = ω+
k u−

k , fk,4 = ω−

k u+
k . (21)

The superconducting order parameter ∆k is expressed as

∆k = ∆k,1 + ∆k,2 + ∆k,3 + ∆k,4, (22)

where

∆k,1 =
∑

k′

Wkk′fk′,1 < α+
k′,σα+

−k′,−σ >, (23)

∆k,2 =
∑

k′

Wkk′fk′,2 < β+
k′,σβ+

−k′,−σ >, (24)

∆k,3 =
∑

k′

Wkk′fk′,3 < α+
k′,σβ+

−k′,−σ >, (25)

∆k,4 =
∑

k′

Wkk′fk′,4 < β+
k′,σα+

−k′,−σ >. (26)

This order parameter is the sum of intraband parameters (∆k,2 and ∆k,2), and interband parameters (∆k,3 and
∆k,4). Using Hamiltonian given by the sum of Eqs (16) and (20) in the equations of motion for Green functions

ε 〈〈A; B〉〉ε =
〈

[A, B]+
〉

+
〈〈

[A, H ]
−

; B
〉〉

ε
, (27)

we obtain the following results









ε − E+
k + µ fk,1∆k 0 fk,4∆k

fk,1∆
∗

k ε + E+
k − µ fk,3∆

∗

k 0
0 fk,3∆k ε − E−

k + µ fk,2∆k

fk,4∆
∗

k 0 fk,2∆
∗

k ε + E−

k − µ









Ĝ(k, ε) =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









. (28)

The solution of Eqs (28) is the Green function given by the matrix

Ĝ(k, ε) =









ε − E+
k + µ fk,1∆k 0 fk,4∆k

fk,1∆
∗

k ε + E+
k − µ fk,3∆

∗

k 0
0 fk,3∆k ε − E−

k + µ fk,2∆k

fk,4∆
∗
k 0 fk,2∆

∗
k ε + E−

k − µ









−1

, (29)

where for example

G12(k, ε) =
fk,1∆k

[

−ε2 + (E−

k − µ)2
]

D(ε)
, (30)

G34(k, ε) =
fk,2∆k

[

−ε2 + (E+
k − µ)2

]

D(ε)
, (31)
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G14(k, ε) =
fk,4∆k

[

−(ε − E−

k + µ)(ε + E+
k − µ)

]

D(ε)
, (32)

G32(k, ε) =
fk,3∆k

[

−(ε + E−

k − µ)(ε − E+
k + µ)

]

D(ε)
. (33)

Denominator, D(ε), for all these functions is given by

D(ε) =
[

f2
k,1∆

2
k − ε2 + (E+

k − µ)2
] [

f2
k,2∆

2
k − ε2 + (E−

k − µ)2
]

+
[

f2
k,3∆

2
k − (ε − E−

k + µ)(ε + E+
k − µ)

] [

f2
k,4∆

2
k − (ε + E−

k − µ)(ε − E+
k + µ)

]

−2fk,1fk,2fk,3fk,4∆
4
k −

[

ε2 − (E+
k − µ)2

] [

ε2 − (E−

k − µ)2
]

. (34)

Replacing in formulae (23)-(26) the mean values by the Green functions we obtain

∆k,1 = −
∑

k′

Wkk′fk′,1

∫

f(ε)

π
ImG12(ε, k

′)dε, (35)

∆k,2 = −
∑

k′

Wkk′fk′,2

∫

f(ε)

π
ImG34(ε, k

′)dε, (36)

∆k,3 = −
∑

k′

Wkk′fk′,3

∫

f(ε)

π
ImG32(ε, k

′)dε, (37)

∆k,4 = −
∑

k′

Wkk′fk′,4

∫

f(ε)

π
ImG14(ε, k

′)dε. (38)

The total superconducting gap ∆k is given by

∆k = −
∑

k′

Wkk′

∫

f(ε)

π
Im [fk′,1G12(ε, k

′) + fk′,2G34(ε, k
′) +fk′,3G32(ε, k

′) + fk′,4G14(ε, k
′)] dε. (39)

The symmetry of the gap ∆k depends on the symmetry of the pairing potential Wkk′ . From Eq. (12) one can see
that the order parameter has to be written as

∆k = ∆sγk + ∆dηk. (40)

Significant advantage of the current method lies in the fact that the superconducting state has pure d-wave and
s-wave symmetry. In the two bands models with only intraband ordering [11-13] symmetry of the order parameter
depended also on the hybridization factor (e.g. gk in [12,13]). The present definition of the order parameter (Eq.
(40)) has the standard form for the s+d wave superconductivity.

Inserting to Eq. (39) both the superconducting gap (40) and the effective potential (12), we obtain two separate
equations describing two types of superconductivity
- for the s-wave superconductivity

1 = −W
∑

k′

γ2
k′

∫

f(ε)

π
Im [fk′,1G

∗

12(ε, k
′) + fk′,2G

∗

34(ε, k
′) +fk′,3G

∗

32(ε, k
′) + fk′,4G

∗

14(ε, k
′)] dε, (41)

- for the d-wave superconductivity

1 = −W
∑

k′

η2
k′

∫

f(ε)

π
Im [fk′,1G

∗

12(ε, k
′) + fk′,2G

∗

34(ε, k
′) +fk′,3G

∗

32(ε, k
′) + fk′,4G

∗

14(ε, k
′)]dε, (42)

where
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G∗

ij(ε, k) =
Gij(ε, k)

∆k

. (43)

The Fermi level used in Eqs (41) and (42) is defined by the condition for carrier concentration in the narrow band

ndσ =
∑

k

∫

f(ε)

π
Im

{

(ω+
k )2G11(ε, k

′) + ω+
k ω−

k [G13(ε, k) + G31(ε, k)] + (ω−

k )2G33(ε, k)
}

dε. (44)

Analytical solution of Eqs (41) and (42) for the nonzero gap (∆k 6= 0, T < TC) is very complicated. In the critical
temperature; T → TC , ∆k → 0, and the solution of Eqs (41) and (42) simplifies to the following forms
- for the s-wave superconductivity

1 = −W
∑

k′

γ2
k′

[

f2

k′,1

2(E+

k′
−µ)

tanh
(

β
2 (E+

k′ − µ)
)

+
f2

k′,2

2(E−

k′
−µ)

tanh
(

β
2 (E−

k′ − µ)
)

+
f2

k′,3
+f2

k′,4

2(E+

k′
+E

−

k′
−2µ)

(

tanh
(

β
2 (E+

k′ − µ)
)

+ tanh
(

β
2 (E−

k′ − µ)
))

] , (45)

- for the d-wave superconductivity

1 = −W
∑

k′

η2
k′

[

f2

k′,1

2(E+

k′
−µ)

tanh
(

β
2 (E+

k′ − µ)
)

+
f2

k′,2

2(E−

k′
−µ)

tanh
(

β
2 (E−

k′ − µ)
)

+
f2

k′,3
+f2

k′,4

2(E+

k′
+E

−

k′
−2µ)

(

tanh
(

β
2 (E+

k′ − µ)
)

+ tanh
(

β
2 (E−

k′ − µ)
))

] . (46)

The above two equations together with Eq. (44) at ∆k → 0 are allowing for calculating the dependence of critical
temperature on carrier concentration, which will be analyzed in the next section.

3. Numerical results and discussion

To compare Eq. (46) with analogous equation for the two-band model of superconductivity with order gap only in
one band [11-13] we insert limiting values of fk,1 = fk,3 = fk,4 = 0 and fk,2 6= 0 into Eq. (46), obtaining the following
equation

1 = −W
∑

k′

η2
k′

(

E−

k′ t̃pd,k′

)2

(

(E−

k′)2 + t̃2pd,k′

)2

tanh
(

β
2 (E−

k′ − µ)
)

2(E−

k′ − µ)
, (47)

where fk,2 = E−

k t̃pd,k′

/[

(E−

k )2 + t̃2pd,k′

]

.

Including terms with fk,1, fk,3 and fk,4 in Eq. (46) allows for obtaining the critical temperature of 100 K at smaller
values of nearest-neighbor interaction. Equation (47) gives this temperature at ε = 2tpd, tpp = 0.15tpd, tpd = 1eV
and nd = 0.75 for the nearest-neighbor interaction W = −0.7tpd, while from Eq. (46) the same temperature at the
same band structure parameters can be reached already at W = −0.6tpd. This gives 15% reduction of the necessary
interaction W . The main contribution to the reduction of W comes from the term with fk,4, which represents the
interband pairing (Eq. (20)). The other two terms (with fk,1 and fk,3) have only small influence on W , e.g. the
fk,1 term, which is responsible for pairing in the upper sub-band (see Eq. (20)) decreases the value of the nearest-
neighbor interaction W for only 1%. For this reason the upper sub-band was neglected in the previous papers with
only intraband order parameter left [11-13]. For simplicity we assume that the interband hopping integral does not
depend on the wave vector k (t̃pd,k ≡ t̃pd).
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0.4 0.5 0.6 0.7 0.8 0.9 1.

25
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75

100

125

150

0.3
0

nd

T
C
[K

]

FIG. 1. Critical temperature TC for the d-wave pairing as a function of the carrier concentration in the narrow band nd

estimated from Eq. (46) (solid line) and Eq. (47) (dashed line), at ε = 2tpd, tpp = 0.15tpd, tpd = 1eV, W = −0.6tpd.

At the same value of interaction W the model with interband pairing (Eq. (46)) will give larger values of the
critical temperature than the model with only intraband pairing (Eq. (47)). Fig. 1 presents the critical temperature
dependence on carrier concentration of copper estimated from Eqs (46) and (47). Both these curves were calculated
for the same set of parameters; ε = 2tpd, tpp = 0.15tpd, tpd = 1eV and W = −0.679tpd. One can see that the maximum
of critical temperature is rising for about 50% when pairing takes place not only in one band.

0.5 1 1.5 2 2.5 3

50

100

150

200

250

0
0

T
C
[K

]

e[eV]

FIG. 2. Critical temperature TC for the d-wave pairing as a function of energy difference between center of the broad band
and the narrow level ε with interband pairing (solid line) and without it (dashed line), at tpp = 0.15tpd, tpd = 1eV, W = −0.6tpd

and nd = 0.75

The influence of interband pairing on maximum of critical temperature and value of necessary nearest-neighbor
interaction grows with decreasing energy difference between the localized level and the center of the broad band. Fig.
2 shows dependence of the critical temperature on this energy difference ε, with interband pairing (solid line) and
without it (dashed line), at tpp = 0.15tpd, tpd = 1eV, W = −0.6tpd and nd = 0.75. Dependence of the nearest-neighbor
interaction necessary for reaching TC = 100K on the energy difference ε is given in Fig. 3 for tpp = 0.15tpd, tpd = 1eV,
nd = 0.75. Decreasing energy gap of hybridized bands; E+

k − E−

k with decreasing ε causes increase of the critical
temperature and decrease of interaction W .
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]

FIG. 3. Nearest-neighbor interaction W as a function of energy difference ε with interband pairing (solid line) and without
it (dashed line), at tpp = 0.15tpd, tpd = 1eV, nd = 0.75and TC = 100K.

The above analysis will be even more important in the three band model describing the interaction between
degenerated oxygen orbital O (2p) and two copper orbitals (3dx2−y2 and 3d3z2−r2), see Górski et. al. [26]. The
kinetic part of this model is given by

H0 = (εp − µ)
∑

k,σ

p+
kσpkσ + (εx − µ)

∑

k,σ

d+
xkσdxkσ + (εz − µ)

∑

k,σ

d+
zkσdzkσ

− ∑

k,σ

(

itxkd+
xkσpkσ + h.c.

)

+
∑

k,σ

(

itzkd+
zkσpkσ + h.c.

) , (48)

where

txk = 2t̃pd

(

sin
kxa

2
− sin

kya

2

)

, tzk =
2t̃pd√

3

(

sin
kxa

2
+ sin

kya

2

)

, (49)

d+
xkσ(d+

zkσ) - are operators creating hole on the 3dx2−y2(3d3z2−r2) level.
The interaction part of Hamiltonian is given by Eq. (11) with d+

kσ(dkσ) being now the creation (annihilation) hole
operators on the 3d3z2−r2 level of copper.

The effective pairing potential used by us previously (Eq. (14) in [26]) was only one from the 36 pairing terms coming
from diagonalization of the model Hamiltonian. Although the chosen single term is dominating superconducting
pairing, but as it was shown above, the other terms can be important as well, particularly terms with operators
χk, where there is a small energy difference between lower hybridized band βk and the middle band χk. Equation
describing order parameter and critical temperature of the d-wave superconductor in this the three-band model will
have six terms and has the following form

1 = −W
∑

k′

η2
k′ [Ck′,1 + Ck′,2 + Ck′,3 + Ck′,5 + Ck′,5 + Ck′,6], (50)

where coefficients Ck′,i are given in Appendix.
Numerical analysis of Eq. (50) shows that the nearest-neighbor interaction creating T d

C ≈ 100K without interband
pairing at ε = 2tpd, tpp = 0, nd = 0.81 is equal to W = −11.04tpd. With the interband pairing, at the same structural
parameters, this interaction drops to W = −4.94tpd. Replacing the oxygen level in the three band model by the oxygen

band εk = εp − 2tpp

[

cos(
kx+ky

2 ) − cos(
kx−ky

2 )
]

with tpp = 0.5tpd (still ε = 2tpd and nd = 0.75) reduces the interaction

to W = −8.02tpd (see [26]). Including additionally interband pairing reduces this value further to W = −4.33tpd.
Concluding; both effects of oxygen band broadening and interband pairing considered together allow for achieving
small and realistic values of the nearest-neighbor charge-charge interaction.
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Appendix

Coefficients Ck′,i used in Eq. (50) are defined as follows

Ck′,1 =
(t̃pdE

+
k′ )2

3
(

(E+
k′ )2 + Ω2

k′

)2

tanh
(

β
2 (E+

k′ − µ)
)

2(E+
k′ − µ)

,

Ck′,2 =
(t̃pdE−

k′)2

3
(

(E−

k′)2 + Ω2
k′

)2

tanh
(

β
2 (E−

k′ − µ)
)

2(E−

k′ − µ)
,

Ck′,3 =
(t̃pdE

−

k′ )2

3
(

(E−

k′ )2 + Ω2
k′

) (

(E+
k′ )2 + Ω2

k′

)

(

tanh
(

β
2 (E+

k′ − µ)
)

+ tanh
(

β
2 (E−

k′ − µ)
))

2(E+
k′ + E−

k′ − 2µ)
,

Ck′,4 =
(t̃pdE

+
k′ )2

3
(

(E−

k′ )2 + Ω2
k′

) (

(E+
k′ )2 + Ω2

k′

)

(

tanh
(

β
2 (E+

k′ − µ)
)

+ tanh
(

β
2 (E−

k′ − µ)
))

2(E+
k′ + E−

k′ − 2µ)
,

Ck′,5 =
(t̃pdE

+
k′)2

Ω2
k′

(

(E+
k′ )2 + Ω2

k′

)

(

tanh
(

β
2 (E+

k′ − µ)
)

+ tanh
(

β
2 (E0

k′ − µ)
))

2(E+
k′ + E0

k′ − 2µ)
,

Ck′,6 =
(t̃pdE

−

k′)2

Ω2
k′

(

(E−

k′ )2 + Ω2
k′

)

(

tanh
(

β
2 (E−

k′ − µ)
)

+ tanh
(

β
2 (E0

k′ − µ)
))

2(E−

k′ + E0
k′ − 2µ)

,

where

E±

k = 1/2

[

ε ±
√

ε2 + 4Ω2
k

]

,

E0
k = 0

Ω2
k = 4t̃2pd

(

sin
kxa

2
− sin

kya

2

)2

+
4t̃2pd

3

(

sin
kxa

2
+ sin

kya

2

)2

.
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