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Abstract. We consider several issues related to reasoning about changes in systems interacting
with the environment by sensors. In particular, we discuss challenging problems of reasoning about
changes in hierarchical modeling and approximation of transition functions or trajectories. This
paper can also be treated as a step toward developing rough calculus.

Keywords: rough sets, reasoning about changes, hierarchical modeling, granular computing, approxima-
tion space, relation (function) approximation, rough calculus, intelligent systems, computational finance,
forex, algorithmic trading

1. Introduction

Reasoning about changes is one of the challenging issues in AI since the beginning of AI (see, e.g.,
[12, 13, 10, 32, 31, 3, 30, 11, 14, 43, 2, 4]).

This paper can be also treated as a first step toward the rough calculus development. There are
several papers by Zdzisław Pawlak related to rough calculus which were published soon after discovering
by him rough sets (see, e.g., [24, 25]). The approach presented in this paper is based on a different
approach to function approximation. Also, our approach to reasoning about function changes is different.
In particular, in many applications we will be not able to derive analytical form of approximations of
function changes but we need to use these approximations in the form represented by induced from data
classifiers (or predictors) for approximate reasoning, e.g., for approximate reasoning about trajectories.
This point of view is also different from the approach based on fuzzy sets presented in [1]. In the paper,
we propose to apply the rough granular approach [27, 39, 17] for formalization of rough derivatives and
for approximate reasoning about them.

In this paper, we consider a bottom up approach. We start from sensory information systems (sen-
sory data tables) in which are recorded sensory measurements in different moments of time. Next, by
using hierarchical modeling are constructed new information systems with more compound structural
granules (sets of objects) such as time windows or sequences of time windows. On different levels of hi-
erarchical modeling one can consider relations of changes, e.g., between successive time windows. Note
that information systems represent only partial information about the universe of possible objects (i.e.,
some samples of possible objects) and the relations of changes should be induced (approximated) from
partial information about the relation. We propose to use Boolean reasoning in searching for models of
approximated relations. In particular, the proposed approach can be used for approximation of transition
relations. Moreover, we illustrate how the approach can be extended for inducing approximation of tra-
jectories defined by transition relations. One can also consider approximation of changes of functions
relative to changes of granules representing their arguments by using the rough-set based methods (see,
e.g., [33, 35]). The discussed approach to function approximation may be treated as complementary to
the approach developed in functional data analysis (see, e.g., [29]).

This article is more intended to pose some questions and provide suggestions in which direction we
may search for answers, rather than deliver ready to use technical solutions. It is an extension of an
extended abstract from the last year CS&P [34] and a continuation of [16, 17].

The paper is organized as follows. In Section 2 we discuss illustrative examples of our approach to
approximation of changes. In Section 3 trajectory approximation is investigated. In Section 4 we present
our work on developing of rough calculus. In particular, we present a real-life example illustrating the
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need for developing foundations for rough calculus and some challenges. In Conclusions, we summarize
the results of the paper.

2. Approximation of changes in hierarchical modeling

In this section, we start from an illustrative example of our approach to approximation of function
changes. The approach is based on Boolean reasoning [15]. Next, we add some comments on ap-
proximation of changes in hierarchical modeling. We assume that the reader is familiar with the basic
notation concerning rough sets (see, e.g., [26, 39, 15]).

Example 2.1. We consider a set U = {x1, . . . , x12} of twelve plums observed in two time moments
t1 and t2, where t1 < t2. We also consider a function f assigning to every object from U value ”1” if
and only if this object is ripe and ”0” otherwise. An attribute a means hardness of objects with three
possible values l− low, m−middle and h− high. An attribute b is a color of plum with three possible
values g − green, y − yellow and v − violet. An attribute c is a size of plum with three possible values
s− small, m−middle and l − large.

More formally, we consider three data tables (U ti , Ati ∪ {f ti}), where i = 1, 2 and (∆U,∆A ∪
{∆f}) such that U ti = {xti1 , . . . , x

ti
12}, Ati = {ati , bti , cti}, Vati = {l,m, h}, Vbti = {v, g, y}, Vcti =

{s,m, l} and Vf ti = {1, 0}, ∆U = {∆x1, . . . ,∆x12}, V∆a = {v → v′ : v, v′ ∈ Va}, V∆b = {v →
v′ : v, v′ ∈ Vb}, V∆c = {v → v′ : v, v′ ∈ Vc}, V∆f = {v → v′ : v, v′ ∈ Vf}. We define
∆a(x) = at1(x) → at2(x), ∆b(x) = bt1(x) → bt2(x), ∆c(x) = ct1(x) → ct2(x) and ∆f(x) =
f t1(x)→ f t2(x), where x ∈ ∆U (see Table 1).

Let us first compute the approximations with respect to values ”1” and ”0” of function f in time
moment t2. We also present the roughness coefficient. For simplicity of notation we omit the subscript
t2.

We define X1 = {x ∈ U : f(x) = 1} = {x1, x2, x3, x5, x7, x9, x10} and X0 = {x ∈ U :
f(x) = 0} = {x4, x6, x8, x11, x12}. Let AS{a,b,c} = (U, IND({a, b, c}) be an approximation space
and U/IND({a, b, c}) a partition of U defined by attributes from {a, b, c}.

We obtain the lower approximation

LOW (AS{a,b,c}, X1) = {x1, x2, x7, x10},

the upper approximation

UPP (AS{a,b,c}, X1) = {x1, x2, x7, x10, x3, x4, x5, x8, x9, x12},

and the roughness of X1

R(AS{a,b,c}, X1) = 1−
card(LOW (AS{a,b,c}, X1))

card(UPP (AS{a,b,c}, X1))
= 1− 4 : 10 = 0.6.

Analogously, we obtain the roughness of X0

R(AS{a,b,c}, X0) = 1− 2 : 8 = 0.75.
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Table 1. Three data tables: tables in time moments t1 and t2 and table of changes ∆f

U t1 at1 bt1 ct1 f t1

xt11 l v l 1

xt12 l y l 1

xt13 m g m 0

xt14 m g m 0

xt15 m y m 1

xt16 m g m 0

xt17 m v m 1

xt18 h g s 0

xt19 h g s 0

xt110 h v s 0

xt111 h g s 0

xt112 h y s 0

U t2 at2 bt2 ct2 f t2

xt21 l v l 1

xt22 l y l 1

xt23 l g l 1

xt24 l g l 0

xt25 m y m 1

xt26 m g m 0

xt27 m v m 1

xt28 m y m 0

xt29 h y s 1

xt210 h v s 1

xt211 h g s 0

xt212 h y s 0

∆U ∆a ∆b ∆c ∆f

∆x1 l→ l v → v l→ l 1→ 1

∆x2 l→ l y → y l→ l 1→ 1

∆x3 m→ l g → g m→ l 0→ 1

∆x4 m→ l g → g m→ l 0→ 0

∆x5 m→ m y → y m→ m 1→ 1

∆x6 m→ m g → g m→ m 0→ 0

∆x7 m→ m v → v m→ m 1→ 1

∆x8 h→ m g → y s→ m 0→ 0

∆x9 h→ h g → y s→ s 0→ 1

∆x10 h→ h v → v s→ s 0→ 1

∆x11 h→ h g → g s→ s 0→ 0

∆x12 h→ h y → y s→ s 0→ 0
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Now let us consider the partition ∆U/IND(AS{∆a,∆b,∆c}) of ∆U equal to

{{∆x1}, {∆x2}, {∆x3,∆x4}, {∆x5}, {∆x6}, {∆x7}, {∆x8}, {∆x9}, {∆x10}, {∆x11}, {∆x12}}.

We compute the approximations of the change region, i.e., of the set

Change = {∆x ∈ ∆U : ∆f(x) = 0→ 1} = {∆x3,∆x9,∆x10} :

LOW (AS{∆a,∆b,∆c}, Change) = {∆x9,∆x10},

UPP (AS{∆a,∆b,∆c}, Change) = {∆x3,∆x4,∆x9,∆x10}.

Using Boolean reasoning, we obtain two decision reducts: {∆a,∆b} and {∆b,∆c}.
Based on the first reduct we obtain the following two types of decision rules.
Rules with accuracy equal to 1 (based on the lower approximation):
if ∆a = h→ h and ∆b = g → y then ∆f = 0→ 1 (based on object ∆x9),
if ∆a = h→ h and ∆b = v → v then ∆f = 0→ 1 (based on object ∆x10),
Rule with accuracy less than 1 (based on boundary region):
if ∆a = m→ l and ∆b = g → g then ∆f = 0→ 1 (based on objects ∆x3 and ∆x4).

Example 2.2. In this example, we are interested in the way quantities (values of condition attributes
a, b, c) change and evolve over time. We use the symbol ∆a as an abbreviation for “change in” the value
of attribute a. By analogy with a system of differential equations of the following form:

∂a

∂t
= f1(a(t), b(t), c(t)),

∂b

∂t
= f2(a(t), b(t), c(t)),

∂c

∂t
= f3(a(t), b(t), c(t)),

we consider decision rules with the ”then” part specified by the attributes ∆a, ∆b, and ∆c with possible
values nc (no change) and sc (small change). The important part of discernibility matrix for ∆a is
presented in Table 2. The set {x1, x2, x5, x7, x10, x12} contains objects with no change in the value of a
at t2 in comparison with the value of a at t1 which are discernible from objects with an observed small
change sc in the value of a. The indiscernibility class {x3, x4, x6} consists of objects with an observed
small change sc in the value of a at t2 in comparison with the valuem of a at t1 and objects indiscernible
from such objects. Analogously, {x8, x9, x11} is the indiscernibility class of objects with an observed
small change sc in the value of a at t2 in comparison with the value h at t1 and objects indiscernible from
such objects. Let us now explain construction of entries of the discernibility matrix using an example of
the entry on the intersection of the column labeled by x1 and the row labeled by {x3, x4, x6}. This entry
consists of all attributes discerning x1 at the moment t1 from each element of {x3, x4, x6}.

Table 2. Important part of discernibility matrix for ∆a.

x1 x2 x5 x7 x10 x12

{x3, x4, x6} a, b, c a, b, c b b a, b, c a, b, c

{x8, x9, x11} a, b, c a, b, c a, b, c a, b, c b b

From the second and third row of Table 2 we compute two object related reducts: {a, b} and {b, c}.
Note that for the rules relative, e.g., to the indiscernibility class {x3, x4, x6} we should preserve the
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discernibility of this class with the indiscernibility class {x8, x9, x11} as well as the discernibility of this
class with objects from {x1, x2, x5, x7, x10, x12}.

Based on the computed reducts we obtain the following decision rules with accuracy less than 1:
if a = m and b = g then ∆a = sc (objects x3, x4, x6 and accuracy 0.67),
if b = g and c = m then ∆a = sc (objects x3, x4, x6 and accuracy 0.67),
if a = h and b = g then ∆a = sc (objects x8, x9, x11 and accuracy 0.33),
if b = g and c = s then ∆a = sc (objects x8, x9, x11 and accuracy 0.33).
For example, for object x1 we obtain three object related reducts (from the second column of dis-

cernibility matrix (see Table 2)): {a}, {b} and {c}.
Decision rules (based on x1 with accuracy equal to 1):
if a = l then ∆a = nc, if b = v then ∆a = nc, if c = l then ∆a = nc.
Analogously, we compute decision rules for ∆a = nc based on x2, x5, x7, x10 and x12 as well as

decision rules for ∆b and ∆c.

In hierarchical modeling, on each level new information systems are constructed on the basis of
already constructed information systems or sensory information systems [35, 38]. For example, start-
ing from sensory information system in which sensory measurements in different moments of time are
recorded one can define on the next level an information system in which objects are time windows and
attributes are (time-related) properties of these windows ( see Figure 1). Operations performed on infor-
mation systems are defined as unions with constraints [36]. These operations are analogous to joins with
constraints considered in databases. For each new constructed information system in hierarchical mod-
eling, changes of one attribute relative to some other ones may be induced using (approximate) Boolean
reasoning [15].
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Figure 1. Granulation of time points into time windows. A natural number T > 0 is the time window length,
vj = (v1j , . . . , vTj) for j = 1, . . . , T , rem(i, T ) is the remainder from division of i by T , α is an attribute defined
over time windows.

It is worth mentioning that quite often this searching process is more sophisticated. For example, one
can discover several relational structures (e.g., corresponding to different attributes) and formulas over
such structures defining different families of neighborhoods from the original approximation space. As
a next step, such families of neighborhoods can be merged into neighborhoods in a new, higher degree
approximation space.
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This approach is also relevant for Perception Based Computing [38]. For illustration let us consider
an explanation of perception included in the book [18]:

The main idea of this book is that perceiving is a way of acting. It is something we do.
Think of a blind person tap-tapping his or her way around a cluttered space, perceiving that
space by touch, not all at once, but through time, by skillful probing and movement. This is
or ought to be, our paradigm of what perceiving is.

Figure 2 illustrates this idea. Note that the challenge is to discover relevant features of histories (i.e.,
paths of sensory measurement recordings after micro actions ‘tap-tapping’) for approximation of decision
function whose values denote the performed actions on higher level.

features 

of 

histories 

higher 

level 

action 

… 

… 
time a1 … ac1 … 

x1 1 

x2 2 

… … 

history of sensory 
measurements and 
selected lower level 

actions over a period of 
time 

Figure 2. Perception idea

3. Trajectory approximation and adaptation

One can also apply the illustrated idea of approximation of changes and Boolean reasoning for function
approximation [33, 35] to transition (function) relation approximation.

First, we introduce some notation. If U∗ is a set of objects and R ⊆ U∗×U∗ then by XR we denote
R-image of X , i.e., the set {y ∈ U∗ : ∃x ∈ X xRy}. A sequence Y0, . . . , Yi, . . ., where Y0 = X and
Yi+1 = YiR for i ≥ 0 is called R-trajectory starting at X . Let as also assume that A is a set of attributes
over U∗, i.e., a : U∗ −→ Va for any a ∈ A, where Va is a finite set of values of the attribute a.

We consider a case when the transition relationR is partially specified by a sample, i.e. by a decision
table DT = (UR, A ⊗ A, dR), where UR ⊆ U∗ × U∗ is a given sample of pairs of objects, A ⊗ A =
{(a, 0) : a ∈ A} ∪ {(a, 1) : a ∈ A} is the disjoint union of A (where (a, 0)(x, y) = a(x) and
(a, 1)(x, y) = a(y), for (x, y) ∈ UR), dR(x, y) = + if xRy, and −, otherwise, for (x, y) ∈ UR. Hence,
we assume that the transition relation is partially specified by a sample of pairs labeled by decision + if
the pair belongs to the relation and −, otherwise.

From this sample, e.g., a rule based classifier CA(x, y) may be induced [36, 39, 35], where (x, y) is
a pair of objects and CA(x, y) = + means that y is one of the next predicted states after x obtained by
applying the transition relation R, and CA(x, y) = −, otherwise1.
1For simplicity of reasoning, we assume that the induced classifier takes only two values but one can extend our considerations
for more values, e.g., by adding the decision value 1/2 representing borderline cases.
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Let us now consider a CA-trajectory starting at the set ‖α‖U∗ , where α is a boolean combination of
descriptors over A and ‖α‖U∗ denotes the semantics of α over U∗ [26, 39].

Now, we would like to find a description of sets Yi (for i > 0) in the CA-trajectory starting at ‖α‖U∗ .
As an illustrative example, we consider the case when α is the conjunction of descriptors from the A-
signature of x [26], i.e., from InfA(x) = {(a, a(x)) : a ∈ A} for some x ∈ U∗, and we induce the
description of ‖α‖U∗CA using boolean combinations of descriptors over A. Hence, from the elementary
granule defined by InfA(x) we derive a predicted description of its CA-image ‖α‖U∗CA defined by
CA(x, y). We define this description by a set of attribute value vectors (more formally, by a disjunction
of conjunctions of some signatures of objects).

Let us assume that CA(x, y) is a rule-based classifier based on a rule set Rule (e.g., a subset of
minimal decision rules [26]). Each rule is one of the following form:

if r then d = + or if r then d = −. (1)

The formula r can be decomposed into two parts r1 and r2, where ri corresponds to the the i-th compo-
nent of (x, y), where i = 1, 2. By D(ri) we denote the set of descriptors in ri, where i = 1, 2.

We restrict our considerations to the case when the decision rules of CA(x, y) are over attributes
A. A more general case, where the decision rules are over attributes constructed from A (see e.g.,
[5, 15, 37, 39, 38, 42, 46]) will be discussed elsewhere.

Let us assume that x0 is a new object and we would like to find the description of the image of the
elementary granule defined by x0 relative to CA(x, y). From the set Rule we select all rules matching
x0, i.e., all rules of the form

if r1 and r2 then d = + or if r1 and r2 then d = −, (2)

where InfA(x0) matches r1.
For v ∈ {+,−}, we define the following sets:

Rv(x0) = {D(r2) : ∃r1 ( if r1 and r2 then d = v) ∈ Rule and x0 is matching r1}. (3)

A set X of descriptors over the set of attributes A (i.e., a set of pairs (a, v), where a ∈ A and v ∈ Va
[26]) is consistent if the set X is a function. If X is a set of descriptors over A and X is a family of sets
of descriptors over A then X is X -maximal consistent if X is consistent and X ∪ Y is not consistent for
any Y ∈ X .

Example 3.1. A set X = {(∆a, l → l), (∆b, g → y), (∆c, s → m)} of descriptors over the set
of attributes ∆A = {∆a,∆b,∆c} (see Table 1) is X -maximal consistent, where X = {{(∆a, l →
l), (∆b, v → v), (∆c, l→ l)}, {(∆a,m→ m), (∆b, y → y), (∆c,m→ m)}}.

Now, we consider all tuples (X,Y, u) such that

1. X is the union of a subset of R+(x0) and Y is the union of a subset of R−(x0);

2. u ∈ INF (B) = {(a, v) : a ∈ B & v ∈ Va}, where B ⊆ A and B is disjoint with the sets of
attributes occurring in X ∪ Y ;

3. X ∪ Y ∪ {u} is the (R+(x0) ∪R−(x0))-maximal consistent set;
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4. voting strategy used in construction of CA(x, y) applied to the set of all rules from Rule of the
form (2), where r1 is matched by x0 and D(r2) ⊆ X ∪ Y returns the decision +.

From the above construction it follows that the image of the elementary granule InfA(x0) relative to
CA(x, y) can be defined as equal to the set of all extensions of X ∪ Y ∪ u, where (X,Y, u) denotes a
tuple satisfying the above conditions.

Iteration of the construction presented above leads to the description by boolean combinations of
descriptors of approximation of trajectory defined by InfA(x0) relative to the approximation CA(x, y)
of the transition relation (see Figure 3).

There are several reasons explaining why the searching for approximate description of trajectories
over boolean combination of descriptors may be useful. One can consider sets in the CA-trajectories
as granules. Then the granule diameter relative to the granule description by boolean combination of
descriptors allows us to characterize uncertainty in identifying states (defined by signatures of objects)
corresponding to this granule. The granule diameter can be easily defined if there is given the descrip-
tion of the granule by boolean combination of descriptors. Each such a description is equivalent to a
disjunction α1 ∨ . . . ∨ αk of conjunctions αi (where 1 ≤ i ≤ k) of descriptors from some object sig-
natures. Let us assume that there is given a distance function ρA : INF (A) × INF (A) −→ R+,
where INF (A) = {(a, v) : a ∈ A & v ∈ Va} and R+ is the set of nonnegative reals. Then the
diameter diamρA(g) of the granule g described by the disjunction α1 ∨ . . . ∨ αk can be defined by
sup1≤i,j≤kρA(ui, uj), where ui, uj denote sets of conjuncts occurring in αi, αj , respectively.

Let us consider another approach to inducing of the image of the elementary granule InfA(x0) rela-
tive to decision tableDT from which the classifierCA(x, y) is induced rather than toCA(x, y), explicitly.
In this case, having InfA(x0), we select from the decision table DT rows matched by InfA(x0) using
only values of attributes of the form (a, 0), where a ∈ A. This allows us to create a new decision table
with conditional attributes of the form (a, 1) for a ∈ A, for all objects y from DT and such that the
binary decision function d in this table is defined by d(y) = 1 if and only if y belongs to a pair of objects
(x, y such that InfA(x) was matched by InfA(x0). Now, one can induce a binary rule based classifier
C from this the new decision table. Observe that this approach allow us to estimate the diameter of the
induced image of InfA(x0) defined by the set of all objects for which the induced classifier C takes
the value 1. To do this, we assume that there is a priori selected a distance function between patterns
occurring on the left had sides of the induced rules. Then, the the diameter may be estimated as the
maximum of distances of patterns defined by rules with the decision 1. The estimated diameter can be
used for warning in the construction of the trajectory approximation that the imprecision in approximate
description of the trajectory states becomes not acceptable.

Figure 3 also illustrates the necessity of trajectory adaptation. This is caused by the fact that the
approximation of the transition relation and the approximation induced from this trajectory are based on
a sample of data. However, data may evolve (e.g., they are growing incrementally). Then the classifier
and the trajectory approximation induced so far may no longer be of satisfactory quality starting from
some moment of time. It is necessary to develop methods allowing us to measure the ‘distance’ between
the predicted trajectory P ′ and the observed trajectory P . If the ‘difference’ is becoming not acceptable,
new classifier for transition relation should be induced. This illustrates another important challenge for
reasoning about changes.
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Figure 3. Approximate trajectory adaptation

4. Rough calculus

Let us start with an example explaining motivation for our work on developing of rough calculus. The
example is related to the classifier (called conservative Victoria) for algorithmic trading EUR/USD on
the real-life stream of ticks delivered by theOanda platform (see www.oanda.com) in the period of 1.5
year. The classifier was designed in AdgaMSolutions company. In the development of the classifier
some of the authors of this paper were involved.

The example is related to stress test functions used, e.g., in financial data mining for estimating
the robustness of the induced classifiers. In Figure 4 and Figure 5 are presented the changes of the
function, called Sh (Sharpe Ratio, Sharpe Index, Sharpe measure or reward-to-variability ratio; http:
// en. wikipedia. org/ wiki/ Sharpe_ ratio ) used to measure the quality of the designed classifier
relative to deviations of shifting moments of the opening and closing positions.

The different areas presented in Figure 4 and Figure 5 illustrate changes in the values of quality
function. Let us describe the situation presented in the figures in more detail.

The value of Sh for this classifier in the period of 1.5 year was close to 3. The classifier was active
24 hours in almost all working days and executed 25000 positions in this period. The results of stress
testing presented in Figure 4 and Figure 5 illustrate the robustness of Sh for the developed classifier
relative to the time delays in opening and closing positions. In these figures, x-axis is used to show the
delay time (in sec) in opening of positions and on y-axis - the delay time (in sec) in closing of positions.
The point (0, 0) represents the result for the stream of around 25 000 positions used on Oanda platform.
The maps in the figures are used to represent results relative to the real value of Sh which was gained in
the period of one and half year. If the result after time delays was, e.g., larger than 105% relative to the
result corresponding to the point (0, 0) (> 105% in the legend in Figure 5) than this point is marked by
the color corresponding to this fact. We used two methods of time deviations, namely deterministic and
random. In the deterministic method, all opening of positions (corresponding to x-coordinates of points)
for all 25 000 positions where shifted exactly by x and y seconds, respectively. In the case of random
method, the delay shifts (x, y) were determined by the exponential probability distribution. In this way,
we obtained two maps shown in Figure 4 and Figure 5, respectively. The results show that the high
robustness of the developed classifier relative to the time delay in opening and closing positions.
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Figure 4. Illustrative example of stress test results. Track record for deterministically rescaled conservative
Victoria based on real trading performance in the period of 1.5 year
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Figure 5. Illustrative example of stress test results. Track record for randomly rescaled conservative Victoria
based on real trading performance fin the period of 1.5 year

One may observe in Figures 4 and 5 points which are stable relative to deviations of the considered
parameters, i.e., points such that even larger deviations of parameters are resulting in small changes in
the quality function (i.e. Sh). There are also less stable points. Areas with stable points correspond to
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areas in which “derivative” of the quality function is “small” while in other areas is relatively “large”. In
searching for models of derivative concept in our approach we use the rough set-based approximations
of changes of functions having only partial information about them. We do not induce from the rough set
based approximations global analytical forms of the approximated functions. We try to be “as close as
it is possible” to the data what is consistent with the suggestions presented in Epilogue of the book [45]
where such a global approach is criticized. One can find here an analogy between this global approach
and the “globalization” paradox related to the large class of functions representable by means of Taylor’s
series (e.g., any polynomial) where local information about behavior of any function is satisfactory for
predicting its value and behavior in arbitrary point.

Observe that the quality function may depend on many parameters of the induced classifiers as well as
on many other parameters, e.g., dependent on platforms supplying data and market constraints. Certainly,
we do not know the analytic form for this function as the function on many parameters defining classifiers
as well as parameters characterizing the environment in which the classifiers work. However, we do need
to have methods for estimation of changes of the quality function relative to small deviation of these
parameters.

It should be now clear for the reader that we need methods for inducing models making it possible to
estimate the discussed changes in values of the quality function. These models can play role analogous to
derivatives in calculus, e.g., helping in estimating regions where the changes are rapid with small changes
of parameters. Our aim is to develop rough set based methods for inducing models describing changes
of such functions, called as rough derivatives, assuming that only imperfect, often partial, information
about functions is available.

This paper can be treated as a first step toward developing rough calculus [24, 25, 1]. One possible
approach to develop a concept of rough derivative is to start from a family of indiscernibility (similarity)
relations defined by different choices of sensory information systems rather than a single indiscernibility
relation and to characterize changes of function approximation relative to changes of indiscernibility
relations. Contrary to the classical calculus, we can not expect to obtain general rules for constructing
rough derivatives of f ◦ g, where ◦ is a given operation on functions, from rough derivatives of f and g.
However, one may induce such rules relative to given data sets (information systems).

In this section, we present an illustrative example explaining our approach. Let us discuss the concept
of derivative of function in the case where the specification of the function is partial, i.e., only a sample of
function is given and it is necessary to induce the function approximation. In this case, rough derivatives
may be interpreted as the induced approximations of functions of changes. We have already suggested
that such approximations may be induced from samples using approximate Boolean reasoning [41].

For some problems related to the quality functions of induced classifiers, changes in their behavior
may be considered over approximation spaces from which they are induced.

In an illustrative example, let us consider a family of approximation spaces rather than a single
approximation space. For simplicity of reasoning, let us consider a non-increasing chain {IND(Ai)} of
indiscernibility relations IND(Ai) defined by attribute sets Ai, where Ai ⊆ Ai+1 (this sequence may
be finite or infinite).

Example 4.1. We consider three attribute sets A1 = {∆a}, A2 = {∆a,∆b} and A3 = {∆a,∆b,∆c}.
We obtain the families of definable sets determined by IND(Ai) as the union of sets from ∆U/IND(Ai),
where i = 1, 2, 3. In our example (see Table 1)

∆U/IND(A1) = {{∆x1,∆x2}, {∆x3,∆x4}, {∆x5,∆x6,∆x7}, {∆x8},
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{∆x9,∆x10,∆x11,∆x12}},

∆U/IND(A2) = {{∆x1}, {∆x2}, {∆x3,∆x4}, {∆x5}, {∆x6}, {∆x7}, {∆x8},

{∆x9}, {∆x10}, {∆x11}, {∆x12}},

∆U/IND(A3) = {{∆x1}, {∆x2}, {∆x3,∆x4}, {∆x5}, {∆x6}, {∆x7}, {∆x8},

{∆x9}, {∆x10}, {∆x11}, {∆x12}}.

Now, let us consider an approximation of changes ∆f of real valued function f relative to IND(Ai)
[33, 35].The quality of approximation of ∆f is relative to the family of definable sets determined by
IND(Ai) and to the acceptable deviation ε of ∆f on relevant patterns [33, 35]. The approximation
quality can be measured, e.g., by the relative size of the boundary region of approximation [33, 35].

Let ε, δ > 0 be given thresholds. We say that the (ε, δ)-derivative of f relative to the family {Ai}
exists if and only if there exists an indiscernibility relation IND(Aj) in this family such that the quality
of approximation of ∆f [33, 35] is at least δ assuming that in the approximation were used patterns
defined by cartesian products of definable sets over IND(Ai) and intervals of reals with length at most
ε.

The intuition behind this definition is the following: The derivative of a function specified by a
sample (of points of its graph) exists if and only if there exists an approximation space (in a given
family) allowing us to approximate the changes of function with the high quality by patterns on which
the deviation of function changes is small.

Observe that the method of construction of trajectory approximation outlined before may be applied
to derivatives of functions (relations) and a given elementary granule, e.g., defined by a new object.
The resulting trajectory approximation may be treated as a solution of a rough differential equation
determined by derivative of a transition (function) relation specified on a sample of pairs of objects.

The illustrated approach can be extended on arbitrary families of indiscernibility (similarity) relations
and, more generally, on families of approximation spaces considered in [33, 35]. For example, in the case
of families of indiscernibility relations one should take into account all possible nondecreasing chains of
indiscernibility relations. A step toward considering rough integrals is included in [41].

Note also that when the time is progressing some unknown parameters of the environment may
change. Then, the induced classifiers should be adopted to these changes. Moreover, there is a need
for developing adaptation strategies making it possible to follow changes of induced rough derivatives in
time. For example, it may happen that at a given moment of time the robustness for the induced classifier,
measured by the estimated rough derivative, is satisfactory but after some period of time, due to changes
of some unknown parameters (e.g., on the market) the robustness of the classifier is decreasing and is
becoming close to not acceptable level. Then, one should be ready to use some adaptation strategies
for adapting the current classifier to this new situation. The hardness of this problem is related to many
issues. For example, the classifier adaptation should be performed very quickly, often on-line. Hence,
one should be able to gather over time changes in the quality of different components from which the
classifier is built (e.g., features or patterns over which it is constructed) to be ready very quickly perform
adaptation of the existing classifier to the new situation.

Let us explain this in more detail. We assume that an agent ag has a local knowledge base KBag(t)
changing in time, e.g., KBag(t) is updated in time by ag with new facts or induced rules related to the
interaction of ag with the environment. Let us also assume that the agent ag has an adaptation strategy
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Str which on the basis ofKBag(t) is selecting a vector of parameters q related, e.g., to features, patterns,
conflict resolution strategies between rules voting for different decisions or parameters specifying inclu-
sion measures. These parameters are specifying a class of approximation spaces from which the relevant
approximation space used for inducing over it the classifier C is selected. The classifier C should be
adapted in time since its performance is dependent on some parameters of the environment which are
not known for the agent ag. For example, the robustness of C can be acceptable at time t but it can
be not acceptable at t + ∆ for some ∆ > 0. Definitely we would like to change the classifier C only
when necessary. For example, when the robustness of C is becoming close to unacceptable we should be
ready to supply a new more relevant classifier C ′ instead of C. To be ready to do this efficiently we may
perform, e.g., on-line selection of vector of parameters q and on the basis of features measuring changes
in time of such vectors to predict the right moment for the classifier C adaptation.

The discussed above situation is illustrating that in searching for function approximation and in par-
ticular for approximation of their changes, we deal with even more compound situation than considered
before when we assumed that a partial information about function is given on a sample of its arguments.
To describe this new case in more detail, let us consider a function f(x, y) with two vectors of variables.
There is available only a partial information about this function in the following form: there are given
values (z1, . . . , zm) of this function for a sample of value vectors of arguments (u1, w1), . . . , (um, wm)
but only values from w1, . . . , wm are known. For example, the values in u1, . . . , um represent values of
unknown parameters of the environment. Then, the problem of inducing approximation of functions and
in particular the problem of inducing the rough derivatives is becoming much harder.

Let us outline some basic steps in inducing function approximation, in this situation. Our system
should be able to discover relevant features (attributes) on the basis of which it will be possible to iden-
tify in the space of functions {f(u, ·) : u ∈ V }, where V is the set of possible values of x, some
regular subspaces, e.g, consisting of functions which are sufficiently close. These subspaces can be de-
fined by the indiscernibility (or similarity) classes relative to the set of discovered features. Then, the
induced function approximation for a particular function from an indiscernibility class should be a good
representative on the whole indiscernibility class. However, there are more challenges. When time is pro-
gressing, unknown parameters are changing and we should be able to predict in advance the moment of
entering into another indiscernibility class (subspace of functions) on which the approximation is already
known or can be induced using, e.g., methods of Case-Based Reasoning [6]. This prediction method can
be based on collected history of (interactive) computations by agents. This is a challenging problem
strongly related to process mining [44, 40]. Observe that in the discussed case the rough derivative is
becoming a dynamic complex object (information granule) rather than a static function approximation.

The discussed example is also showing the case of complex interacting granules represented by
complex classifiers or function approximations, knowledge base sources and the environment. This is
related to the Wistech program presented in [7, 8, 9].

Conclusions

We discussed some aspects of approximate reasoning about changes from data and domain knowledge.
This paper can also be treated as a step toward developing rough calculus. We have also presented some
challenges which are on the list of our current research topics now.
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[42] Ślȩzak, D., Wróblewski, J.: Roughfication of numeric decision tables: The case study of gene expression
data. In: Yao, J. T., Lingras, P., Wu, W.-Z., Szczuka, M., Cercone, C., Ślȩzak, D. (eds.), Proceedings of the
Second International Conference on Rough Sets and Knowledge Technology (RSKT 2007), Toronto, Canada,
May 14-16, 2007, LNCS 4481, Springer, Heidelberg, 2007, 316–323.

[43] van Harmelen, F., Lifschitz, V., Porter, B. (Eds.): Handbook of Knowledge Representation. Elsevier, Ams-
terdam, 2008.

[44] van der Aalst, W.M.P. (ed.): Process Mining Discovery, Conformance and Enhancement of Business Pro-
cesses. Springer, Heidelberg, 2011.

[45] Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, New York, NY (1998)

[46] Wnek, J., Michalski, R. S.: Hypothesis-driven constructive induction in AQ17-HCI: A method and experi-
ments. Machine Learning 14(1) (1994) 139–168.


