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Abstract 

The need to optimize the trajectory of vehicles is still highly topical, regardless weather the 

means of transport are robots, forklifts or road vehicles. It is not only important the safety by 

passing obstacles, but also the energy balance, i.e. the energy expended on the movement of the 

vehicle and on the change of its direction. This paper presents a mathematical approach to solving 

this problem through interpolation and approximation curves. This is a very important scope of 

knowledge for the education of future engineers. 
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Introduction 

Movement of vehicles only rarely proceeds in a straight line. On the contra-

ry – regardless weather transporting material or people into smaller or larger 

distances, it is almost always necessary to deal with obstacles on the path. This 

includes both safe avoiding obstacles and selecting the best possible trajectory 

from several possible options. Choosing the optimal trajectory makes thus the 

movement safer, may reduce the transportation costs and last but not least it may 

also save time. 
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Mathematically it is possible to perform an interpolation or an approxima-

tion of the trajectory. These mathematical procedures are used in this case as 

generating principles, which allow to model continuous arcs of the line. While 

by an interpolation the curve always passes all the associated points, by an ap-

proximation the curve passes only the first and last point, and does not have to 

include necessarily other associated points, which depends particularly on the 

given approximation function. From the mathematical point of view, it does not 

matter whether it is about the movement of a mobile robot in a production hall, 

a forklift in a storehouse or a road vehicle on a street (Kvasnová, 2008). 

Ferguson interpolation curve 

Ferguson interpolation curve of third degree allows an easy following of in-

dividual sections. The mathematical description of Ferguson curve bases on the 

position vectors G


 a H


, respective points G and H, as well as on the tangent 

vectors g


 and h


 of the curve at these points. Ferguson curve is then given by 

equation (1) (Farin, 1993), 
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Performing the corresponding calculation, we obtain the vectors m


, n


, p


, 

q


, expressed by four equations (2), (3), (4) a (5) 
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Ferguson curve can also be expressed in form: 
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where: )(vA , )(vB , )(vC  a )(vD  are third degree polynomial, for which is 

true: 



38 

 
132)( 23 +−= vvvA

 (7) 

 
23 32)( vvvB +−=
 (8) 

 
vvvvC +−= 23 2)(

 (9) 

 
23)( vvvD −=

 (10) 

If we select in equation (7), (8), (9) and (10) the parameter v of the interval 

 1,0 , then we obtain a smooth curve that starts at point G and ends at point H. 

This type of curve is relatively suitable for modeling the trajectory of vehicles, 

since it ensures – due to appropriate choice of control points – safe passage of 

obstacles, although the length of the trajectory may increase. 

Bezier interpolation curve 

Bezier interpolation curves allow simple networking of following segments 

because the first two and the last two control points define a tangent to the curve 

at the endpoints. The touch vectors at the endpoints are determined by equations 

(11) and (12) (Pavlovkin, Jurišica, 2003a, 2003b): 

 )()0(' 01 BBnC −=  (11) 

 )()1(' 1−−= nn BBnC , (12) 

where: n  is the degree of the curve. 

On the other hand, Bezier interpolation curve may cause – by selecting iden-

tical control points as by Ferguson curve – a risk of collision with an obstacle, 

moreover, the length of the trajectory increases. 

Interpolation B-Spline curve 

B-Spline curves exhibit many useful properties, in particular the parametric 

continuity C2 of third degree curves, so that they can also be used as interpola-

tion curves. The parametric continuity Ci defines in which way are the respective 

curves connected; the index of the continuity indicates the equality of respective 

i-derivates of the end-points of the individual curves; i.e. the continuity C0 indi-

cates that the curves are connected with an edge (the first derivatives are not 

equal), the continuity C1 enables a smoother connection of the curves (as the first 

derivatives are equal) but with different convexity or concavity and thus with an 

abrupt change of centripetal acceleration. The continuity C2 ensures that the 

connected curves have the same convexity (concavity), as the both second deri-

vates are equal. The computation can be performed by means of two methodes – 

matrix inversion or searching for Bezier’s control points. 
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Matrix inversion is a general method which can be used for all curves. If we 

can – based on the control points – calculate the coordinates of some points on 

the curve, then it is possible by the inverse procedure to determine the control 

points from known curve’s points, too. The point, where the respective segments 

are continuing, lies in the anti-centroid of the triangle, defined by three consecu-

tive control points. The location of the anti-centroids is obtained by following 

construction, which is depicted graphically in Figure 1. The initial point of the 

arc P(0) is a point of the median connecting the edge P1 and the center of the 

opposite side P0P2 of the triangle P0P1P2, which lies in one third of the length of 

the median line from the edge P1 (anti-centroid of the triangle P0P1P2). The final 

point P(1) of the arc is the anti-centroid of the subsequent triangle P1P2P3, which 

lies in one third of the length of the median line from the edge P2 to the opposite 

side P1P3. 

 

 

Figure 1. Construction of the anti-centroid (Novák) 

 

Searching for Bezier’s control points is basically an extension of Cardinal 

curves method, allowing to obtain a continuous C2 curve. Bezier’s control points 

Vi are located at the distance id  from the interpolation points Pi; this ensures C1 

continuity. If the curve C2 is to be continuous, it must be satisfied (13): 

 1112200111 )(2)()()(2 PdPdPdPdPP ++−−=++−−  (13) 

The sections d0 and dn we have to choose. Subsequently, we calculate the 

coefficients Ai and Bi and then we recursively calculate also the remaining sec-

tions iiii dBAd 111 −−− += , thus obtaining the Bezier’s control points. The possi-

bility to choose the tangential vectors at the endpoints is a great advantage by 

vehicles, since the initial vector should have the same direction, as the vehicle is 

oriented. Thus it will not be necessary to turn the vehicle before starting the 

movement along the trajectory. 

B-Spline curves obtained by both of these methods are almost the same (as 

we are looking for the same control points), and they differ only at the edges 
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(different choice of tangential vectors at the endpoints). However, the method of 

searching for Bezier’s control points is more preferred, as it is significantly fast-

er than the matrix inversion method. Additionally, interpolation B-Spline curves 

are like Bezier curves susceptible to creating “loops” and therefore they are used 

only where the development of such drawbacks does not mind or is excluded 

(Pavlovkin, Jurišica, 2003a, 2003b; Demidov, 2003). 

Bezier approximation curves 

General Bezier curves allow an approximation of 1+n  given points by an 

n-degree curve. The curve is described by the equation (14): 
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General Bezier curves have a relatively high smoothening ability, so that 

they are only marginally nearing to the individual control points. This is consid-

erably disadvantageous in some applications, but elsewhere it may be useful; it 

depends on the specific conditions in which the vehicle is moving. 

The general disadvantage of Bezier curves is the non-locality of changes – 

each point of the curve is influenced by all control points; i.e. changing an indi-

vidual control point changes the shape of the whole curve. Therefore Bezier 

curves often consist of shorter segments. This way it is possible to obtain the 

locality of changes and to simplify the difficulty of the calculation, while main-

taining all the advantages of the curves. To connecting individual sections, Bezi-

er curves of third degree are mostly used. Basis functions can be determined in 

advance, since the order of the curve is always known at the beginning. 

B-Spline 

Classic B-Spline curve is formed by linking Coons curves in such a way that 

the last three control points of one segment are identical to the first three points 

of the next section. In most cases there are used Coons curves of the third de-

gree. The first segment is then determined by the points P0, P1, P2 and P3, the 

second segment by the points P1, P2, P3 and P4. The last point of the first seg-

ment and the first point of the second segment are identical, as they lie in the 

anti-centroid of the same triangle; thus the C0 continuity is ensured (Demidov, 

2003). 
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Joining of the individual sections is very smooth. B-Spline curves ensure the 

continuity Ck-1 in the joint point, where k means the degree of the curve; i.e.  

B-Spline curve of the third degree guaranties a C2 continuity. Using a Bezier 

curve, only the C1 continuity is ensured. B-Spline curve therefore retains all the 

advantages of Bezier curves and it is a lot smoother when connecting the indi-

vidual sections. B-Spline curve, however, has one major disadvantage – it does 

not pass the outermost points of the control polynomial. It can be removed by 

any of the control points will be multiple (Demidov, 2003). 

If one control point is double, then the curve is significantly closing to 

that control point, and in a certain section it may even overlap the control 

polynomial. If the control point is triple, then the curve passes directly 

through this control point and it in the surroundings of such point it is ident i-

cal with the control polynomial; however, this feature is useful only for the 

endpoints. So if the endpoints of the control polynomial are triple, the curve 

will interpolate the endpoints. The disadvantage is that near the endpoints the 

curve degenerates into line segments and it loses its smoothness. Another, 

more efficient method is to use different basis functions for the first two and 

the last two sections of the curve so that the curve passes through the end-

points. However, this method requires at least seven control points, so it can-

not be used for simpler trajectories. 

Interpolation by Ferguson curve 

The interpolation by Ferguson curve, which is depicted in Figure 2, is a suit-

able method for optimizing specific vehicles’ trajectory, but it must be expected 

that the length of the trajectory gets extended compared to the direct path. The 

vehicle does not have to stop at the edges of the control polynomial; it has only 

to slow down sufficiently respected to the radius of turn. With this option of 

control points, the trajectory passes in a safe distance from individual obstacles 

and thus the risk of collision with one of the obstacles is eliminated. 

 

a)  b)  

Figure 2. Interpolation by Ferguson curve (Pavlovkin):  

a) for a pointwise vehicle; b) for a real vehicle 
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The calculation of the interpolation is always performed every second point. 

An element of the array has the coordinates of the point (x, y); an empty element 

of the array has the coordinates (–1, –1). The drawing of the interpolation curve 

is solved by means of the C++ graphics program Borland Delphi 2.0. This pro-

gram draws the Ferguson curve basing on two given points and respective direc-

tion vectors at these points. 

Interpolation by Bezier curve 

Interpolation by Bezier curve, shown in Figure 3, is by the specified setup 

of control points inappropriate for generating the trajectory of a vehicle, as it 

causes collisions with obstacles. Total length of the path is also substantially 

greater than by the interpolation by Ferguson curve. For use in a real environ-

ment, it would be necessary to the change are the coordinates of points 3, 4, 5 

and 6 to achieve the desired path. The collision-free path of the vehicle for this 

way changed points is demonstrated in Figure 4. From the comparison of trajec-

tories in Figure 3 and Figure 4 it is apparent that the selection of the supporting 

points affects significantly the length and the shape of the trajectory. However, 

a suitable arrangement of the individual control points enables creating a usable 

trajectory, provided it is possible in respect to the location of the obstacles. 

 

a)  b)  

Figure 3. Interpolation by Bezier curve (Pavlovkin):  

a) for a pointwise vehicle; b) for a real vehicle 

 

 

Figure 4. Interpolation by Bezier curve after changing the coordinates of the control points 

(Pavlovkin) 
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Approximation by Ferguson curve 

Unlike the preceding interpolation cases, by an approximation the trajectory 

does not necessarily include the control points along the path. Approximation by 

Bezier curve, which is depicted in Figure 5, is more convenient and shorter than 

the preceding two cases, but a large-size vehicle may interfere with an obstacle, as 

shown in Figure 5b. The possibility of such a conflict can be avoided by changing 

the coordinates of the control point 4; the subsequent change in trajectory is 

demonstrated in Figure 6. In such setup of control points, it is also possible by an 

appropriate shifting of the point 6 to shorten the overall length of the trajectory. 

 

a)  b)  

Figure 5. Approximation by Ferguson curve (Pavlovkin):  

a) for a pointwise vehicle; b) for a real vehicle 

 

 

Figure 6. Approximation by Ferguson curve after changing the control point 4 (Pavlovkin) 

Approximation by Cubic B-Spline 

By approximation of a piecewise linear trajectory by means of Cubic  

B-Spline curve we obtain a trajectory, which is shorter and smoother, and thus 

less time- and energy-consuming. The vehicle moves smoothly along such tra-

jectory, i.e. with a smooth change of direction and speed of its movement, as 

depicted in Figure 7 (Pavlovkin, 1999; Demidov, 2003). 

The basic principle of generation of B-Spline curves is that we define Bezier 

curves of degree n at intervals (ui, ui+1); where n is the degree of the polynomial 

of the respective B-Spline curve and L is the number of segments of the  

B-Spline. So we create a sequence of points, namely the sequence u0 … uL+2n-2. 

Not all points ui, however, are different; if ui = ui+1 then it is a multiple point. 
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a)  b)  

Figure 7. Approximation by Cubic B-Spline (Pavlovkin): 

a) for a pointwise vehicle; b) for a real vehicle 

 

To define B-Spline we use the interval (un-1, un+L-1) as its domain, these 

points are called domain points, while L means the potential number of segments 

of the curve. If all domain points are simple, then L is also the number of domain 

intervals. For every multiplicity of a domain point, the number of domain inter-

vals reduces by one. The sum of multiplicity of all domain points corresponds 

with L, as it true that: 

 
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where: ri means the multiplicity of domain points ui. 

For generating the B-Splines we used De Boor’s algorithm. Let’s true that: 
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where rnk −= ,...,1  and 1,...,1 +−+−= IknIi   

which is the degree of B-Spline given the parametr u. 
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while ( ) .0 Cdud ii =  

Conclusion 

An overall comparison of the various options optimizing of the vehicles’ 

movement between obstacles give the best results for the approximation based 

on Cubic B-Spline (Pavlovkin, Jurišica, 2003a, 2003b). The mathematical model 

of such trajectory exhibits fluency, both in terms of necessary speed changes, 
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and regarding the smoothes of the change of direction. Important is also the fact 

that of all the analyzed trajectories this one is the shortest, which yields energy 

saves. Although the shortening of the trajectory need not be regarded as consid-

erable, compared to other options, the total saving of energy may be high, in 

particularly over a longer period of time or if the same trajectory repeats regular-

ly several times (stock houses, factories, agricultural activities). Finally, it has to 

be pointed out that the trajectory approximated by Cubic B-Spline exhibits rela-

tive high level of safety, as it passes all the obstacles – unlike some other trajec-

tories – with sufficient distance and virtually eliminates any possibility of colli-

sion of the vehicle with an obstacle (Kvasnová, 2014). 
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