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ABSTRACT
Currently, new and easier ways of analyzing pharmaceutical drug forms and drug delivery mechanisms are being sought. 
Magnetic resonance imaging (MRI) is a non-invasive imaging technique that images drug forms such as tablets, liquids and 
topicals and drug form behavior in living organisms on both the tissue and cellular scale. The advantages of MRI include non-
invasiveness, variable sample capacity and ease of transfer of phantom results to in vitro and in vivo studies. This review concerns 
the usefulness of clinical MRI that cannot be understated as this technique provides non-invasive and non-destructive insight into 
the properties of drug delivery systems. The research discussed here concerns the use of magnetic resonance, spectroscopy and 
chromatography to investigate selected pharmaceuticals and covers work of selecting drugs and antibodies for modification by 
synthesis for evaluation by MRI. Modifications have been aimed at improving therapeutic efficacy, delivery, and MRI. Modification 
conditions such as (pH, concentration, temperature, and the influence of other components present in the solutions) will be 
discussed to understand drug delivery system improvements and the reliability and repeatability of the results obtained. We 
hope to explore and expand the scope of pharmaceutical imaging with MRI for application in clinical medicine.
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Introduction
Currently one of the most accurate non-invasive imag-
ing methods is magnetic resonance imaging (MRI). This 
method allows one to make sections in any plane of both 
living organisms and non-anatomical structures. The sig-
nals we receive in MR depend on the object being tested 
and its properties. We have the ability to obtain data with 
morphological, functional and metabolic information. To 
non-invasively monitor drugs inside the human body is 
a challenge. However, MRI has not been yet used in its 
full capacity in the field of pharmacy.  The application 
of MRI in the sphere of pharmacy began in 1995 and is 
constantly developing. The main applications of MRI in 
vitro are monitoring of water and other solvents, con-
trolled release of dosage forms, hydration and diffusion. 
The use of MRI in pharmacy can provide a platform to 
transfer knowledge from an in vitro study to an in vivo 
study in drug delivery and controlled release of dosage 
forms. This transfer of knowledge already takes place in 
research and there are several example studies on neu-
rological drugs, anticancer drugs and vitamins. The first 
application of MRI in pharmacy to study pharmaceutical 
tablets was published by Nebgen et al. where the authors 
showed the distribution of porosity in tablets which is an 
important subject for the generation of solid drugs.1 In 
another work published by Hyde et al., the first quantita-
tive MRI investigation based on a study of water migra-
tion from phosphate buffered solution into monolithic 
implants made of poly(glycolic acid-co-DL-lactic acid) 
produced by an extrusion process was conducted.2 MRI 
is interesting for the magnetic properties of the nuclei of 
individual atoms. Each nuclei has its magnetic moment, 
which along with the applied magnetic field align with 
the lines of the field. The resulting weak net magnetiza-
tion precess when disturbed from equilibrium. The fre-
quency of precession (ω) is equal to the applied mag-
netic field (B) multiplied by the magnetogyric ratio (γ). 
The magnetogyric ratio,  γ, is a property that varies for 
different nuclei, being largest for the hydrogen nucleus 
γ=42,58 s-1T-1. Radiowaves of angular frequency (ω) show 
a resonant interaction with the nuclei. A pulse of radio 
waves at this frequency can therefore be used to disturb 
the nuclei from equilibrium and set them into preces-
sion. Unfortunately, the MR signal is intrinsically weak, 
but increases in strength with increasing γ and B. MRI 
is therefore generally only applied to samples containing 
1H nuclei in high concentrations. One MRI technique 
is magnetic resonance spectroscopy (MRS). MRS is a 
diagnostic tool used to characterize tissues in terms of 
their chemical composition.3-5 MRS is used to determine 
the chemical properties of a given area, focusing on the 
metabolites of the cells. The method is based on the effect 
of the chemical shift of the atom (nuclei of different cells 
precess at different frequencies).6-7 Most commonly per-
formed experiment is single-voxel spectroscopy (SVS), 

where the signal is received from the selected location. 
Measurements are made using PRESS (Pointed-Resolved 
Spectroscopy) or STEAM (Stimuled Echo Aquisition 
Mode) sequences. Based on the recorded signal from a 
given voxel, a Fourier transform is calculated and then 
spectra are generated on which individual peaks corre-
spond to individual metabolites.8 A chemical shift graph 
of signal frequency in parts-per-million (ppm) is gen-
erated from the signal amplitude. The area under the 
peak corresponds to the concentration of the metabolite. 
This provides the possibility of quantification of signal by 
using internal standards. Measurements are made using 
the PRESS (Pointed-Resolved Spectroscopy) or STEAM 
(Stimuled Echo Aquisition Mode) sequences. Based on 
the recorded signal from a given voxel, Fourier transform 
is calculated, and then spectra are generated on which 
individual peaks correspond to individual metabolites. 
In a technique called Magnetic Resonance Spectroscopic 
Imaging (MRSI), we can obtain color maps where the 
concentration level of a particular metabolite is encoded 
by color. Identification and quantification of the metabo-
lite such as N-acetyl l-aspartic acid (2.02 ppm), creatine 
(3.02 ppm), choline (3.22 ppm) and lactate (1.33 ppm) 
in phantom were performed using SAGE post processing 
software. In order to evaluate the performance of an MR 
system, an MR phantom has been developed to accurately 
analyze errors of MR systems.9-11 This makes it possible 
to visualize the distribution of metabolites throughout 
the brain. This is problematic, however, because the data 
received may include voxel bleeding, that is, voxel noise 
from the surrounding voxels.12-14 

MRI in pharmacy 
The pharmaceutical sector has MRI related examples 
where formulations have been studied by observing tablet 
hydration and its effect during dissolution. MRI has been 
used to study internal mechanisms underlying in vitro 
drug release behavior in dosage forms, to monitor events 
within pharmaceutical processes, and in vivo to investi-
gate the behavior of drug delivery systems in the body.15 
Examples of pre-clinical and in vitro MRI in new drug 
design studies include forms such as nanoparticles.16-20 
and nanogels.21 Drug delivery systems use MRI to map 
drug transport and physiological response. Drug devel-
opment 22-23 and drug release24-28 have also been studied 
by MRI. As shown in the PubMed Data Base, the number 
of total publications regarding the applications of MRI in 
pharmacy is constantly increasing.

The authors provide innovative and creative exam-
ples of the use of MRI research in pharmacy. Also, the 
number of publications on contrast agents has increased 
due to intensive searches for improvement of diagnostic 
methods. With MRI, we are able to provide non-inva-
sive ways to visualize events during controlled-release 
dosage. Using MRI, we also have a tool that is helpful in 
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understanding the processes that occur in drug metab-
olism. This may have a significant impact on the devel-
opment of a new generation of pharmaceuticals29. Poros-
ity and compaction density are important parameters in 
the manufacture of tablets by compression. Nebgen et al. 
have shown how MRI can provide a noninvasive method 
for mapping the density distribution within a compacted 
tablet at a spatial resolution of (95 μm). However, factors 
such as paramagnetic materials, water–air, and solid–air 
interfaces can cause MRI artifacts.30-32 MRI can identify 
tissue macromolecules such as nucleic acids, lipids, col-
lagen and proteoglycans using parameters such as chem-
ical shift, relaxation rates, and magnetic spin couplings. 
The enormous potential of MR to translation of the com-
plex physical and mathematical concepts into biological 
material is recently an emerging area of empirical and 
theoretical interests. The MR techniques to determine 
proton relaxation times spin - lattice T1 and spin - spin 
T2 are numerous. These include a method fully relaxed 
Inversion recovery (IR)33, Fast Inversion Recovery (FIR)34, 

Modified Fast Inversion Recovery (MFIR)35, Progres-
sive Saturation (PS)36 , Saturation Recovery (SR)37, Vari-
able Nutation (VN)38, Look Locker (LL)39, choice of flip 
angles, delay intervals, and amount of signal averaging. 
These methods in a greater or lesser extent take advan-
tage to provide a T1 and T2 measurements.40-41 T1 and T2 in 
MRI are functions of spin density and also instrumental 
parameters such as the pulse sequence timing and slice 
selective sensitivity profile.42 In liquids at higher tem-
peratures T1 and T2 are almost equal. However, in solids 
and at low temperatures, there little molecular motion, 
T1 may be many seconds while T2 is only microseconds. 
The most commonly used methods in MRI for generat-
ing T1 maps are based on the basic pulse sequences used 
for T1 measurements in Nuclear Magnetic Resonance 
(NMR) spectroscopy: PS and IR. These radio-frequency 
pulse sequences can be combined with several imaging 
techniques and are used frequently in MRI.43 The relax-
ation process is characterized by two exponential time 
constants T1 and T2. The transient time-domain signal 

Figure 1. Publications on MRI Applications in Pharmacy

Figure 2. The MRI phenomenon
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is digitized and stored in a computer. In MRI, the resul-
tant magnetization aligned with the static magnetic field, 
which is called longitudinal magnetization, is tipped into 
the transverse plane, where it can be detected as an elec-
tric signal. This so-called transverse magnetization decays 
exponentially with a time constant T2. The longitudinal 
magnetization relaxes back to its equilibrium orientation 
parallel to the static magnetic field exponentially with 
a time constant T1. The mechanisms by which contrast 
agents enhance relaxation involve the magnetic moments. 
Relaxation does not occur spontaneously, it must be stim-
ulated. Longitudinal magnetization relaxes toward equi-
librium as excited spins undergo transitions to lower 
energy states.44 These transitions must be stimulated by 
a changing magnetic field. A magnetic field oscillating 
in strength at the Larmor frequency supplies a quantum 
of energy exactly equal to the energy difference between 
the two states, thereby stimulating relaxation. The mag-
netic moments associated with particles such as nuclei, 
electrons, and atoms supply changing magnetic fields to 
stimulate relaxation (Figure 2). These magnetic field fluc-
tuations are vital for relaxation.45 

The first published calculated T1 image was generated in 
1978 using sequence PS showed in Figure 3. Briefly, after 
the first 90 degree pulse, the magnetization is perturbed 
within the selected slice into the transverse plane. The 
transverse magnetization processes during the time inter-
val TE and relaxes exponentially with a time constant as 
the 180 degree pulse refocuses any dephasing due to field 
in homogeneities. Longitudinal relaxation occurs during 
the interval TR until the next sequence repetition. If the 
next 90 degree pulse is applied the longitudinal magne-
tization has been allowed to recover completely during 
the intermediate period.46 

Most MR studies indicated that the often used pulse 
sequence to measure T1 relaxation time is the IR measure-
ments.40 The pulse diagram for IR is shown in Figure 4. 
Briefly, 180 degree pulse inverts the magnetization vec-
tor MZ. After this the magnetization lies along the neg-
ative z axis and MZ = - MZ.  The T1 relaxation makes the 
magnetization increase during time interval from - M0 

Figure 3. Partial or progressive saturation in a 2D Fourier 
Transform spin-echo pulse sequence 

Figure 4. Inversion Recovery

Figure 5. Variable tip angle,  2D Fourier transform gradient 
recalled echo pulse sequence

throughout zero until it is back to original value MZ = 
M0. If at some time following the 180 degree pulse, the 
90 degree pulse is applied MZ is rotated around the X 
axis and will then lie somewhere along the Y axis. A T1 
of a 90 degree pulse reads the relaxed magnetization.47

T1 maps can also be generated by using a vari-
able-tip-angle pulse during the MRI experiment. In this 
method, a pulse of tip angle zero-0 is used to perturb the 
magnetization, which is then left to partially relax back 
to its thermal equilibrium value during the short TR. As 
the excitation pulse is generally other than 90 degree only 
a fraction of the thermal equilibrium magnetization is 
tipped into the transverse plane. This transverse magnet-
ization is then a function of both the pulse tip angle 0 and 
the amount of longitudinal relaxation that has occurred 
during the time interval TR.48 In this case, the applica-
tion of a 180 refocusing pulse to form a spin echo can-
not be used, because such a pulse also would invert the 
magnetization that has remained along the longitudinal 
axis. Instead, an echo is formed through the use of gra-
dients. This radio-frequency pulse sequence can then 
be incorporated into any imaging regime Figure 5.  The 
transverse relaxation during TE is now described by the 
effective transverse relaxation time constant.49

Figure 5 presents a pulse sequence where T1 derives 
from the ratio of the STE of the SE and is formed from 
the first two pulses. Equation 1 shows the ratio of STE 
and SE where TM is the time between the second and 
third pulses.
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STE/SE = exp(-TM/T1)

This assumes perfect 90º pulses. Also to eliminate dif-
fusion effects, a plot of 1/T1eff  against TE2 yields a straight 
line whose intercept at TE = 0 is 1/T1-T1eff  is the measured 
T1 at each TE.50  A SE sequence in which the magneti-
zation stored on the z axis during TM is sampled with a 
series of pulses with increasing flip angles designed to give 
equal SI in the absence of T1 relaxation. T1 is calculated 
from SI=S0 exp(TM/T1). Two pulses produce a SE, and a 
series of low-angle pulses then produce a series of STEs. 
The T1 is derived from the SE and STE intensities, which 
would all be the same if there were no T1 relaxation. SE 
is very sensitive to flip-angle errors and could be improve 
by the SNR by changing the flip angle of the second pulse 
to 180 degree. It was forms a composite echo with a SE 
and a STE 90 degree out of phase and calculated T1 from 
the phase of the signal. Phantom STE data are similar to 
IR data, but human STE data were not compared to IR 
phantom data  (Figure 6-7). 51 

MRI and MRS measurements show that engineered 
liposomes can detect the mildly acidic pH of the tumor 
microenvironment with 0.2 pH unit precision and they 
release their content into C6 glioma tumors selectively, 
in vivo.52 MRSI of the pH sensitive probe (+/-)2-(imid-
azol-1-yl)succinic acid disodium salt and a pH map of 
a tumor in vivo was investigated. Citrate, choline-con-
taining compounds,  creatine and polyamines have also 
been described by MRSI.  The protons of Citrate reso-
nate around 2.6 ppm, but the precise chemical shift and 
the scalar coupling of these protons depend on pH and 
cation concentration in cellular membranes.53 MRSI was 
used in neurooncology but also in multiple sclerosis, 
stroke and epilepsy. However, a major challenge in con-
ventional MRSI is the longer acquisition time required 
for adequate signal to be collected.54

Studies to characterize the reliability of MRSI ther-
mometry, including contributions from inter-scan and 
interexamination variability have been performed. In 
addition, measurments of the variation between sub-
jects and assessment of the extent of brain temperature 
variation.55 MRSI also provids spatially localized maps 
of metabolite concentrations.56 MRSI provides a unique 
modality to non-invasively study tissue metabolism in 
vivo; it acquires metabolic information reflecting tissue 
function and provides a sensitive assessment of chemical 
alterations.57 Table 1-3 presents the applications of MRI  
to study the forms of drugs and properties. 

The study provided by  Zeitler  and co-worker 
showed as a calibration set such that the MRI signal 
from the pore space of the tablet could provide a mea-
sure of tablet density. Different sets of production tablets 
were analyzed using the MRI method and the density 
distribution within the dosage form was determined.76 
Since T1 of pure water can be 3–5 s and the image acqui-

sition time is proportional to TR, this can lead to poor 
temporal resolution. In addition, the shortest achievable 
TE is restricted by the finite time required to turn the 
gradients on and off, limited by the hardware, as well 
as the time to record the signal. The use of low-field 
MRI (typically 0.5 Tesla) for pharmaceutical research, 
and specifically for tablet dissolution, has been limited 
partly due to the availability of instrumentation and also 
the perceived lack of sensitivity.77 Nickel-doped agarose/
sucrose gels can be used as reference materials for MRI 
diffusion measurements and show excellent short-term 
stability with respect to ADC. A phantom made of these 
materials can be invaluable in optimizing DW-MRI pro-
tocols, developing novel pulse sequences for DW-MRI, 
or comparing ADC values among field strengths, ven-
dors, and imaging centers.78 Magnetic Block Ionomer 
Clusters with hydrophilic ionic cores and nonionic coro-
nas have been prepared that have ultrahigh transverse 
NMR relaxivities together with capacities for incorpo-
rating high concentrations of polar antibiotic payloads. 
Magnetite-polymer nanoparticles were assembled by 
adsorbing the polyacrylate block of an aminofunctional 
poly(ethylene oxide-b-acrylate) (H2N-PEO-b-PAA) 
copolymer onto magnetite nanoparticles.79 Magnetic 
nanoparticles possess unique magnetic properties and 
the ability to function at the cellular and molecular level 
of biological interactions making them an attractive 
platform as contrast agents for MRI and as carriers for 
drug delivery. Recent advances in nanotechnology have 

Figure 7. Multiple gradient echo

Figure 6. STE sequence
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Table 1. MRI in Pharmacy

Authors Ref Sample Experiment
Nebgen G et al. 31 circular tablet qualitative study on the hydration of HPMC tablets

Soussi B. et al. 58 implant
extruded monolithic zero-order release kinetics implant; 

characterization of the liquid in polymer by T2 maps
Hyde T.  

and 
Gladden L.

59 circular tablet
qualitative imaging study of the erosion of the drug containing 

compartment of a dry coated controlled release tablet

Peppas N. et al. 60 extrudate
measurement of water distribution in lipid/MCC extrudates 

processed at different speed and different water content in the 
formulation

Fyfe C. and 
Blazek-Welsh A.

32 spherical pellet
drug release from different formulations of API loaded lipid matrix 

pellets; diffusion measurements using PGSE sequence

Harding S. et al. 61

lipophilic 
matrix  

heophylline 
beads

quantitative imaging experiment of the liquid  concentration, T2 
distribution and self-diffusion coefficient within poly(glycolic lactic 

acid) controlled release drug delivery system

Malveau C. et al. 62 capsule plug
dissolution study of coated pulsatile release capsules; release is 

triggered by swelling hydrogel plug
Johns M. 

and Gladden L.
63 circular tablet

quantitative measurement of the polymer concentration during 
the hydration of tablets

Baumgartner S. et al. 64 circular tablet
swelling and water diffusion was studied in samples of high 

amylose starch tablets

Richardson JC et al. 15 circular tablet
porosity imaging of tablets penetrated by gadolinium-doped 

silicon oil
Djemai A and Sinka I. 65 circular tablet water penetration into the tablets is studied experimentally

Karakosta E. and 
McDonald P.

66 spherical pellet
pore structure evolution in pellets during dissolution; pellets were 

made of lactose and MCC

Marchessault R. et al. 67 circular tablet
porosity measurement of tablets made of three different 

excipients (MCC, lactose and anhydrous calcium phosphate) 
compressed at different pressures

Mäder K. et al. 68 capsule plug
dissolution study of capsules formulated from HPMC and L-dopa 

using flow through cell in a horizontal magnet

Table 2. MRI measurements of drugs

MRI drugs

Maximum sample size 5 mm to 30 cm

Measurement possibilities
chemical specificity to nuclei of interest (intrinsic signal)
nuclear spin relaxation times
molecular mobility

Chemical sensitivity high

Advantages

chemical specificity
in situ dissolution studies are possible
quantitative technique
ability to study flow and diffusion processes
wide range of imaging sequences is available to specifically emphasise certain 
properties of the sample

Limitations

only some solids can be imaged directly
the experiments are usually destructive as they require the interaction of a liquid phase 
with the sample
operation of strong magnetic fields requires special safety precautions
restricted sample size in magnetic more
paramagnetic materials (such as most metals) have to be eliminated from the sample 
setup
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improved the ability to specifically tailor the features 
and properties of MNPs for these biomedical applica-
tions.80 The objective of this study was to prepare and 
characterize magnetic nanoparticles embedded in poly-
lactide-co-glycolide matrixes (PLGA-MNPs) as a dual 
drug delivery and imaging system capable of encapsu-
lating both hydrophilic and hydrophobic drugs. Mag-
netic resonance imaging was carried out both in vitro 
and in vivo to assess the efficacy of PLGA-MNPs as 
contrast agents. PLGA-MNPs showed a better contrast 
effect than commercial contrast agents due to higher T2 
relaxivity with a blood circulation half-life~47 min in 
the rat model.81 The inverse relationship between T1 and 
nanoparticle concentration accounts for the nonlinear 
increase in contrast, resulting in a modest leveling of the 
contrast effect at high concentrations when TE is kept to 
a minimum (~7 nM). The close agreement between the 
model and the phantom data supports extrapolations 
to lower concentrations of nanoparticles. If a CNR >= 
5 is defined as the minimum diagnostically meaningful 
contrast, the model shows that only picomolar concen-
trations of nanoparticles need be present within a typi-
cally-sized imaging voxel to produce diagnostic contrast 
enhancement for molecular imaging.74

Conclusion
The number of papers regarding the applications of MRI 
in pharmacy shows a huge progress in MRI hardware and 
software applied to biomedical research. 
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